中国高校课件下载中心 》 教学资源 》 大学文库

东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary

文档信息
资源类别:文库
文档格式:PDF
文档页数:48
文件大小:1.06MB
团购合买:点击进入团购
内容简介
东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary
刷新页面文档预览

Mathematical Preliminarymi@se.edu.cn

Mathematical Preliminary

Outline·Scalar,Vector and Matrix(标量、矢量、矩阵) Indicial Notation and Summation Convention (指标记法与求和约定)KroneckerDelta(克罗内克)Levi-Civita symbol(轮换记号)CoordinateTransformation(坐标变换)Tensor(张量)PrincipalValuesandDirections(特征值与特征向量)TensorAlgebra(张量代数)Tensor Calculus(张量微分)Integral Theorems(积分定理)·Cylindrical and Spherical Coordinates(柱与球坐标)2

Outline • Scalar, Vector and Matrix(标量、矢量、矩阵) • Indicial Notation and Summation Convention(指标记法 与求和约定) • Kronecker Delta(克罗内克δ) • Levi-Civita symbol(轮换记号) • Coordinate Transformation(坐标变换) • Tensor(张量) • Principal Values and Directions(特征值与特征向量) • Tensor Algebra(张量代数) • Tensor Calculus(张量微分) • Integral Theorems(积分定理) • Cylindrical and Spherical Coordinates(柱与球坐标) 2

Scalar: Scalar: representing a single magnitude at eachpoint in spaceExamples:. Material densityYoung's modulusPoisson's ratioShear modulusTemperature3

Scalar • Scalar: representing a single magnitude at each point in space • Examples: • Material density • Young’s modulus • Poisson’s ratio • Shear modulus • Temperature 3

Vector: Vector: representing physical quantities thathave both magnitude and directionExamples:.Force: Displacement of material pointsRotation of material points4

Vector • Vector: representing physical quantities that have both magnitude and direction • Examples: • Force • Displacement of material points • Rotation of material points 4

Matrix (Array). Matrix: a rectangular array of numbersm-by-nmatrixaijncolumnschangesmrowsai,1a1.2a1.3iuhangesa2.1a2.2a2.3a3.1a3.2a3.3Array: a data structure in which similar elementsof data are arranged in a table5

Matrix (Array) • Matrix: a rectangular array of numbers • Array: a data structure in which similar elements of data are arranged in a table 5

Indicial Notation=X3: Orthogonal unit vectors: ix j = kVector decomposition:a=OP=(a.i)i+(a·j)j+(a·k)k=e23Za,e,=ae, +a,ez +a,e, =-i=1EX Indicial notation: a shorthand scheme whereby awhole set of components is represented by asingle symbol with subscriptsxiaeiaa12a13a22a2a21a23X.X2e2a;x.e3asasa32a336

      3 1 2 3 1 i i i a a a a             1 2 3  a OP a i i a j j a k k e e e e j=e2 P y=x2 e1=i k=e3 x =x1 O a z =x3 • Orthogonal unit vectors: • Vector decomposition: i j k   • Indicial notation: a shorthand scheme whereby a whole set of components is represented by a single symbol with subscripts 1 1 1 11 12 13 2 2 2 21 22 23 3 3 3 3 32 33 , , , i i i ij x a a a a x x a a a a a a x a a a a                                             e e e e Indicial Notation 6

Indicial Notation. Addition and subtraction[ai ±bi[αi ± bia13 ±b13a12±b12ai±b; =a21 ± b21a22 ± b22 a23 ±b23a2 ± b2,aij±bij=La3 ± b3 a31 ± b31a32±b32a33 ±b33? Scalar multiplication[a[2a112a122a13lai =Na2,Naij =1a22Za23a21a312a3La32Za33. Outer multiplication[abiab2 ab3α2b1 a2b2 azb3a;b; =La3biasb2a3b3.7

Indicial Notation • Addition and subtraction • Scalar multiplication • Outer multiplication 7

Indicial Notation: Commutative, associative and distributive lawsai+bi=bi+aia;(bikc) = (aibjk)claijbk = bkaijai;(bk + Ck) = aijbk +aijCkai+(bi+ci)=(ai+bi)十CiEquality of two symbols[a = b,ai2 = b2a13 = br3au =bu2α23 =b23a, = b, =αz = b2,aj =b, α21 = b21 α22 = b22a33 = b3[a31 = b31 a32 = b32[a, = b,. Avoida,=b8

Indicial Notation • Commutative, associative and distributive laws • Equality of two symbols 1 1 11 11 12 12 13 13 2 2 21 21 22 22 23 23 3 3 31 31 32 32 33 33 , i i ij ij a b a b a b a b a b a b a b a b a b a b a b a b a b a b                                • Avoid , i j ij kl a b a b   8

Summation Convention: Summation convention: if a subscript appears twice inthe same term, then summation over that subscript fromone to three is implied333aii =ai=a11+a22+a33ayx,x, =ZZi-1a,xxj3i=1 j=laijb;=Zaijbj = aiibi + aizb2 +ai3b3j-1αi=αj=αk In a single term, no index can appear more than twice. Dummy (repeated) indices vs. free (distinct) indices. Among terms, index property must match.9

Summation Convention • Summation convention: if a subscript appears twice in the same term, then summation over that subscript from one to three is implied ii jj kk a a a   • In a single term, no index can appear more than twice. • Dummy (repeated) indices vs. free (distinct) indices • Among terms, index property must match. 3 3 1 1 ij i j ij i j i j a x x a x x      9

Contraction and Symmetry. Contraction: for example, ai, is obtained from a., bycontraction on i and j? Outer multiplication → contraction → inner producta,b, (contraction on ij) a,b,a,bu (contraction on jk) aibu Symmetric vs. antisymmetric (skewsymmetric) w.r.t. twoindices, i.e. m and naij..m..... = aij....m...aij...m.....k = -aij....m...k. Useful identity: aij =(aij_(aij -aji)10

Contraction and Symmetry • Contraction: for example, aii is obtained from aij by contraction on i and j • Outer multiplication → contraction → inner product     contraction on contraction on i j i i ij kl ik kl a b ij a b a b jk a b • Symmetric vs. antisymmetric (skewsymmetric) w.r.t. two indices, i.e. m and n • Useful identity: 10

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档