东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain

Displacement and Strain
Displacement and Strain

Outline: Generalized DisplacementSmall Deformation Theory Continuum Motion & Deformation Strain & RotationPrincipal StrainsSpherical and Deviatoric StrainCylindrical Strain and Rotation: Spherical Strain and RotationStrain CompatibilityDomain Connectivity2
Outline • Generalized Displacement • Small Deformation Theory • Continuum Motion & Deformation • Strain & Rotation • Principal Strains • Spherical and Deviatoric Strain • Cylindrical Strain and Rotation • Spherical Strain and Rotation • Strain Compatibility • Domain Connectivity 2

Displacement.Conceptof displacement: coordinatedifference of the samematerial point intwo reference states? Displacement=Rigid-body translation+Rigid-body rotation+ Strain deformation: Rigid-body motion: the distance and angle among all materialpoints remain the same.Strain deformation: a material is said to be deformed or strainedwhen the distance or angle among material points is changed.We are not concerned with rigid-body motions in elasticity theory3
Displacement • Concept of displacement: coordinate difference of the same material point in two reference states. • Displacement = Rigid-body translation + Rigid-body rotation + Strain deformation • Rigid-body motion: the distance and angle among all material points remain the same. • Strain deformation: a material is said to be deformed or strained when the distance or angle among material points is changed. • We are not concerned with rigid-body motions in elasticity theory. 3

Small Deformation TheoryAdx=dx'-dx =u-uPtPYdxdx'oPPi(Undeformed)(Deformed)(Deformed)(Undeformed)Quouou. Taylor expansion of u w.r.t. uo:dzdxu=udy+Ozaxayu=u° +u.dx+..OvOvOvdzdx -d1V=Ozaxu, = u' +ui.,dx, +.ayowowowdzdx +dy-W=W△dx, = u, -u ~ ui,dx一ayOzax4
Small Deformation Theory , , d d d d o i i i j j o i i i i j j u u u x x u u u x o u u u x (Deformed) (Undeformed) d d d d d d d d d o o o u u u u u x y z x y z v v v v v x y z x y z w w w w w x y z x y z • Taylor expansion of u w.r.t. u o : dx dx d d d o x x x u u 4

Small Deformation Theory: Displacement gradientOuOuouaxOz6avav)=6+0axOzOwowowayOxOz + Vu), strain tensor (symmetric)1=(uV-Vu), rotation tensor (anti-symmetric)2.Total displacementu, = u +(cu +)dx;?5
, , , , , 1 1 ( ) ( ) 2 2 i j i j j i i j j i ij ij u u u x y z v v v u u u u u x y z w w w x y z , , , , 1 1 ( ); , strain tensor (symmetric) 2 2 1 1 ( ); , rotation tensor (anti-symmetric) 2 2 ij i j j i ij i j j i u u u u u u u u Small Deformation Theory • Displacement gradient • Total displacement d o i i ij ij j u u x 5

Continuum Rigid-body Motion & Deformation: Components of total displacement at a material point+ 8.,dx, + ,dxu.=uGeneralRigid-bodyStrainRigid-bodydisplacementdisplacementdisplacementrotation(Undeformed Element)(Rigid BodyRotation)(Vertical Extension)(ShearingDeformation)(Horizontal Extension)6
d d o i i ij j ij j u u x x • Components of total displacement at a material point General displacement Rigid-body displacement Strain displacement Rigid-body rotation (Undeformed Element) (Rigid Body Rotation) (Horizontal Extension) (Vertical Extension) (Shearing Deformation) Continuum Rigid-body Motion & Deformation 6

Two-dimensional strain-displacement relationotB(x+dx,y):Ouu(x+dx, y)=u(x,jdxv(x,y+dy)axavv(x+dx, y)=v(x, ydxaxC(x, y+dy):auv(x,y)Oxu(x,y+dy)=u(x, y11dxayu(x+dx.yu(xy)yv(x,y+dy)=v(x,dyOnouOvauOu= dxdx:A'BdxdxdxXaxaxOxaxavOuOvOuaaudx +dxdxdyα ~tanatandidyaxaxaxOyayay
Two-dimensional strain-displacement relation d , : d , , d , d , , d ; , d : , d , d , , , . B x x y u u x x y u x y x x v v x x y v x y x x C x y y u u x y y u x y y y v v x y dy v x y dy y 2 2 2 d d d d 1 2 u v u u A B x x x x x x x x 2 v x 1 d ; tan d d d , tan d d d . u x x v u u v v u x x x y y y x x y y x y

Two-dimensional Geometric Deformation. Normal strainOudx-dx1ouA'B'- ABax8.=8.dxaxABOv:3-D Strain-displacementayOvA'C'- AC6,=8yACdyayrelationship.Engineering shear strainavOuow88ayOzaxOvOu元ZC'A'B'=α+β =Yxy(ouav2Oxa18x2ayaxShear strainavowS12Ozay1ou1Oyowou2axa11a2axOz8
1 d d , d 1 d d . d x xx y yy u x x A B AB u x AB x x v y y A C AC v y AC y y • Normal strain ; 2 xy v u C A B x y • Engineering shear strain • Shear strain 1 1 . 2 2 xy xy v u x y Two-dimensional Geometric Deformation , , 1 2 1 2 1 2 x y z xy yz zx u v w x y z u v y x v w z y w u x z • 3-D Strain-displacement relationship 8

Two-dimensional Rigid-body Rotationau: Rigid-body rotation around z-axisayOvOvOu1Ou02axOyOxOy. Integrate for constant rotationdyu=u°-o.yav[v* =v° +0.xaxdxx·3-D rigid-body rotation0,=-1/28k0jk=1/28kuk,j1OusOu2u=u°-のy+O,zwi = w3220x20x31=y°-0z+0_xOuiOu3W2=W132x3axi=w-0,x+o.y1Ou2aur3=w2120x10x29
Two-dimensional Rigid-body Rotation • Rigid-body rotation around z-axis 1 2 z v u v u x y x y • 3-D rigid-body rotation * * * o z y o x z o y x u u y z v v z x w w x y , 1 2 1 2 i ijk jk ijk k j u 9 * * o z o z u u y v v x • Integrate for constant rotation

Sample ProblemDetermine the displacement gradient, strain and rotation tensors for the following displacementfield: u = Ax y , v = Byz , w = Cxz3, where A, B, and C are arbitrary constants. Also calculatethedualrotationvector(=(1/2)(Vxu)Ax?02AxyBz0Byuii=Cz303Cxz?[2AxyAx?/2Cz3 / 2Ax? / 2BzBy/23Cxz?Cz3 / 2By /20Ax? / 2-Cz3 /20-Ax? /2By /2Cz3 / 20-By / 2e2eiesBye, -Cz’'e, - Ax’e,a/ax0/oz0=(1/2)(V ×ualay2Cxz3AxyByz10
2 , 3 2 2 3 2 , , 3 2 2 3 2 , , 3 1 2 3 2 2 0 0 0 3 2 / 2 / 2 1 / 2 / 2 2 / 2 / 2 3 0 / 2 / 2 1 / 2 0 / 2 2 / 2 / 2 0 1 1 2 / / / 2 i j ij i j j i ij i j j i Axy Ax u Bz By Cz Cxz Axy Ax Cz u u Ax Bz By Cz By Cxz Ax Cz u u Ax By Cz By x y z Ax y Byz Cxz e e e ω u 3 2 1 2 3 3 1 2 By Cz Ax e e e Sample Problem 10 Determine the displacement gradient, strain and rotation tensors for the following displacement field: 2 3 u Ax y , v Byz , w Cxz , where A, B, and C are arbitrary constants. Also calculate the dual rotation vector = (1/2)(u)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 中华人民共和国国家标准:金属材料力学性能试验术语(GB/T 10623-2008)Metallic material-Mechanical testing-Vocabulary(ISO 23718,2007,MOD).pdf
- 东南大学:《固体力学基础》课程教学资源(文献资料)Hibbeler-2017-MECHANICS OF MATERIALS-TENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Gere-2009-Mechanics of Materials-SEVENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Beer-2015-Mechanics of Materials-Seventh Edition.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)桥梁抗震习题答案(789).pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(结构动力学概述).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第6章 桥梁减隔震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第4章 桥梁工程抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第5章 桥梁延性抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第3章 桥梁抗震概论.pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(单自由度体系的振动分析).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第2章 桥梁震害.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第1章 地震概述.pdf
