东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs

Simple Linear Elastic BVPsmi@se.edu.cn
Simple Linear Elastic BVPs

Outline·Reviewoffieldequations(线弹性力学控制方程回顾)·Thermoelasticity(热弹性力学本构关系)·Small strain theory in cylindrical coordinates (柱坐标)·Axial symmetry(轴对称)·Pressurized cylindrical shell(压力圆筒)·Spinningdisk(圆筒转动)·Interferencefitbetween two cylinders(圆筒过盈装配)· Small strain theory in spherical coordinates (球坐标系)·Spherical symmetry(球对称)·Pressurized spherical shell(压力球腔)·Gravitating planet(重力球)·Steady-state heat flow in spherical shell (球腔稳态热流)2
Outline • Review of field equations(线弹性力学控制方程回顾) • Thermoelasticity(热弹性力学本构关系) • Small strain theory in cylindrical coordinates(柱坐标) • Axial symmetry(轴对称) • Pressurized cylindrical shell(压力圆筒) • Spinning disk(圆筒转动) • Interference fit between two cylinders(圆筒过盈装配) • Small strain theory in spherical coordinates(球坐标系) • Spherical symmetry(球对称) • Pressurized spherical shell(压力球腔) • Gravitating planet(重力球) • Steady-state heat flow in spherical shell(球腔稳态热流) 2

Review of Field EquationsStrain-displacement relations: +u+ Strain compatibility: Sy,k + Su,j -Sik,jl -Sjlik = 0 Equilibrium: Oj,; + F, = Oj, + pb, = 0.Isotropic Hooke's Law:E1+vVVQi1EE(1+v) (1-2v Traction BCs on SRoDisplacement BCsesRon SueiDeformedOriginalConfigurationConfiguration3
, , 1 2 ij i j j i u u ij kl kl ij ik jl jl ik , , , , 0 , , 0. ij i j ij i j F b 1 ; . 1 1 2 ij kk ij ij ij ij kk ij E E E Review of Field Equations • Strain-displacement relations: • Strain compatibility: • Equilibrium: • Isotropic Hooke’s Law: 3 • Traction BCs on St • Displacement BCs on Su

Thermoelastic Constitutive RelationsA temperature change in an elastic solid produces deformation The total strain can be decomposed into the sum of mechanical andthermal components.It is extremely important to understand that, the elastic stiffnesstensor (C) correlates mechanical stress and mechanical strain1+vVMTotalS+α△TSOkkN1EETotalTotal -8,=eM0,+2GeM=a(-8h)+2GS&kk, = Ae toal8, +2Ge,foal (3 + 2G) αAT8, = NeTol , +2Ge,Tol-3Kα△TS,EEαTVTotalTotalSo0kki111+v[1-2v(1-2v)4
Total M T 1 ij ij ij kk ij ij ij E E T Thermoelastic Constitutive Relations • A temperature change in an elastic solid produces deformation. • The total strain can be decomposed into the sum of mechanical and thermal components. 4 • It is extremely important to understand that, the elastic stiffness tensor (C) correlates mechanical stress and mechanical strain. Total Total Total Total Total Total Total Total 2 2 2 3 2 2 1 1 2 1 3 2 T T kk ij ij i M M ij kk ij ij kk ij ij ij kk ij ij kk ij ij ij kk ij ij ij G T j G G G G E E T K T

Cylindrical Strain and Rotation&=(u+Vu); Q=u-Vu); u=u,e, +uge +ue,,ouOuduoueougPueere.u.e.egP6a0Ozaraaroueouou1 0u-eee4.e+OzOzr 0Oroue1(1OuUe0.00=0=0-2a0arrr11Ouououe1 OuQesQr22OzarOzra01ououeou1 (1ouaueWeCUr88+rear00ara0Oz2rroue1u1OuOu.602S22OzOzar00r5
Cylindrical Strain and Rotation c 1 1 ; ; ; 2 2 1 1 1 1 1 0, 2 r z r r r r r r r z r r z z z z z r z z z r r z r u u u u u u u u u u r r z r r u u u u z r r z u u u r r r θ z ε u u ω u u u e e e e e e e e e e e e e u e e e e e e e e , 1 1 1 , ; 2 2 1 1 1 , , , , 2 1 1 1 , . 2 2 z z r z zr r z r r r z r z z r z zr r u u u u z r r z u u u u u u u r r z r r r u u u u z r r z 5

Cylindrical Equilibrium EquationsX3V . = contraction on the first and third index of zd10terat.6,-0V.0LO0Ozrrrotre100gat-oTre+Ter二azOrr 00Treatr1 0Tgd0eoOzOra0rCeX2de-0V.6+F=0drdo,Otr10treaaTreT00rz三0arazr 001=0TozTreOtreate100e2tre +F。=0,0.TrTozOzOrr 00ot,10teagTr=o,e,+tre,+t,e.TrF=0T'=tre,+Ogee+To.e:OrOzr a0rT"=t,e,+Te-eo+o.e.6
6 Cylindrical Equilibrium Equations contraction on the first and third index of 1 1 1 r r zr r r r z r r rz z z rz z r r z r r r z r r r z r σ σ σ e e e r r rz r rz z z z σ 1 0, 1 0, 1 0. 2 r r r r r r rz z z z z z r rz F r r z r F r r z r F r r z r σ F 0 r r r rz z r z z r r rz z z z r θ z T e e e T e e e T e e e

Hooke's Law in Cylindrical CoordinatesX. Recall that. the elastic stiffnesstensor C is a fourth orderoisotropic tensor.Its components remain unchangedunder any orthogonal coordinateAsystems.0The isotropic Hooke's law stays thesame.EEαAT(1-2v)1+v1+vVEEα△TTotalM,+8+8.)+8gGijGi0CEE(1+v) (1-2(1-2v)EEαTEEαT2(1-2v1J(1-2v)1+v)11-EEET(1+v)(1+v)(1+v7
x3 x1 x2 r z dr z r r rz z d Hooke’s Law in Cylindrical Coordinates 7 Total 1 , . 1 1 2 1 2 M T ij ij ij ij kk ij ij ij kk ij ij ij T E E E E T , 1 1 2 1 2 , 1 1 2 1 2 , 1 1 2 1 2 , , . 1 1 1 r r z r r z z r z z r r z z rz rz E E T E E T E E T E E E • Recall that, the elastic stiffness tensor C is a fourth order isotropic tensor. • Its components remain unchanged under any orthogonal coordinate systems. • The isotropic Hooke’s law stays the same

Axial Symmetryea? Displacements and stressesu=u,[rle, +e,ze., o=o, [rle,e, +oo[rlese.+o.[rle.ee2? Strain-displacement relation:verdu,u,Ce2drr0e? Equations of motion:do, +,-0+F,=-po°rPlane strain, ordrAgeneralizedplane strain? Hooke's law in cylindrical coordinatesEEαT?Plane strain(1-v)6, + v8g +ve.)o(1-2v)(1+v)(1-2v)8, =0.EEαATve, +(1-v)g。 +ve.0e: Generalized plane strain(1-2v)(1+v)(1-2v)8 =const., F,=["2元ro,drEEoATve, +ve +(1-v)oa(1-2v)(1+v)(1-2v)8
Axial Symmetry • Displacements and stresses • Strain-displacement relation: • Hooke’s law in cylindrical coordinates d , d r r r u u r r 1 , 1 1 2 1 2 1 , 1 1 2 1 2 1 . 1 1 2 1 2 r r z r z z r z E E T E E T E E T 8 u e e u r z r r r r r z z r r r z z z , σ e e e e e e • Equations of motion: r r 2 r d F r dr r 0. z • Plane strain • Generalized plane strain const., 2 . b z z z a F r dr

Axial Symmetry Plane stressEαT1+vEVTotalMYA+6=8.GiOiEE(1+v) [1-2v(1-2v)E(1+)α△TEαT0=0.08.(1+v)(1-2v)-2y1-ve3(1+v)α△T-(c, +6)8=8+8+81-v1-EEα△TO(1-v)EαATEIQe(1-v)e2er0er(α +o,)+α△T=0.Planestress. Boundary conditions: u,[a]=ua, u,[b]=u0,[a] =0a, ,[b]=09
Axial Symmetry • Plane stress , , r a r b r a r b u a u u b u a b • Boundary conditions: 2 2 , 1 1 , 1 1 0, . r r r z z x y E E T E E T T E Total 1 , . 1 1 2 1 2 1 1 0 1 1 2 1 2 1 2 1 1 1 1 2 1 1 M T ij ij ij ij kk ij ij ij kk ij ij ij z r z z r kk r z r E E T T E E E E T T T 9

Axial Symmetry: Stresses in terms of displacements (generalized plane strainEEαTduurr+Veo(1+v)(1-2v(1-2v)drAEEαATdu+VEOe(1+v)(1-2v)(1-2v)drEEαTdu,(1-2v)(1+v)(1-2v)drStresses in terms of displacements (plane stress)EEEαTEαATdu,u,du,urO.O01-v21-v2dr(1-v)"dr(1-v)rr Equilibrium equations in terms of displacementsdo,+,-O=-F,-po"r(generalized plane strain)drr(1+v)(1-2v)1 du,α(1+) d△Turdudr2drdrr(1-v)E(1-v)dr10
• Stresses in terms of displacements (generalized plane strain) Axial Symmetry d 1 , 1 1 2 d 1 2 d 1 , 1 1 2 d 1 2 d 1 . 1 1 2 d 1 2 r r r r r r r z z z z E E T u u r r E E T u u r r E E T u u r r • Stresses in terms of displacements (plane stress) 2 2 d d , . 1 d 1 1 d 1 r r r r r E E T E E T u u u u r r r r • Equilibrium equations in terms of displacements (generalized plane strain) 2 2 2 2 2 d d d d 1 d 1 d d 1 1 1 2 . d d d d 1 d 1 r r r r r r r r F r r r u u u T ru F r r r r r r r r r E 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 中华人民共和国国家标准:金属材料力学性能试验术语(GB/T 10623-2008)Metallic material-Mechanical testing-Vocabulary(ISO 23718,2007,MOD).pdf
- 东南大学:《固体力学基础》课程教学资源(文献资料)Hibbeler-2017-MECHANICS OF MATERIALS-TENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Gere-2009-Mechanics of Materials-SEVENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Beer-2015-Mechanics of Materials-Seventh Edition.pdf
- 《固体力学基础》课程参考文献:《材料力学史》书籍教材PDF电子版(铁木生可).pdf
- 东南大学:《固体力学基础》课程概述 Foundations of Solid Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A01 Introduction to Architectural Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A22 Cyclic Loading and Fatigue.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A21 Dynamic Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A20 Energy Method.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)桥梁抗震习题答案(789).pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(结构动力学概述).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第6章 桥梁减隔震设计.pdf
