东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials

Hyper-elastic Materialsmi@se.ed.cn
Hyper-elastic Materials

Outline·Introduction(引言)·Mechanical behavior of rubbers(橡胶性能)·Mechanical behaviorofpolymericfoams(泡沫性能)·Strainmeasure(应变度量)·Stress measure(应力度量)·Generalized constitutive law(一般本构关系)·Incompressibility(不可压缩性)·Polynomialmodels for rubbers(橡胶多项式本构)·More sophisticated rubber models(复杂本构)·Foam constitutive models(泡沫本构)·Calibrating nonlinearelastic models(模型校准)2
Outline • Introduction(引言) • Mechanical behavior of rubbers(橡胶性能) • Mechanical behavior of polymeric foams(泡沫性能) • Strain measure(应变度量) • Stress measure(应力度量) • Generalized constitutive law(一般本构关系) • Incompressibility(不可压缩性) • Polynomial models for rubbers(橡胶多项式本构) • More sophisticated rubber models(复杂本构) • Foam constitutive models(泡沫本构) • Calibrating nonlinear elastic models(模型校准) 2

Introduction: Main applications of the theory are (1) to model therubbery behavior of a polymeric material and (2) to modelpolymeric foams that can be subjected to large reversibleshape changes (e.g., a sponge). In general, the response of a typical polymer is stronglydependent on temperature, strain history, and loading rateShear modulus (N/m?2)ViscoelasticGlassy109RubberyMelt105Glass transitiontemperatureTTemperature3
Introduction 3 Shear modulus (N/m2 ) • Main applications of the theory are (1) to model the rubbery behavior of a polymeric material and (2) to model polymeric foams that can be subjected to large reversible shape changes (e.g., a sponge). • In general, the response of a typical polymer is strongly dependent on temperature, strain history, and loading rate

Introduction. Rubbery behavior: the response is elastic, the stress does not dependstrongly on strain rate or strain history, and the modulus increaseswithtemperature. Heavily cross-linked polymers (elastomers) are the most likely toshow ideal rubbery behavior.Hyperelastic constitutive laws are intended to approximate thisrubbery behavior.Shearmodulus (N/m?)ViscoelasticGlassy109RubberyMelt105Glass transitiontemperatureTTemperature4
Introduction 4 Shear modulus (N/m2 ) • Rubbery behavior: the response is elastic, the stress does not depend strongly on strain rate or strain history, and the modulus increases with temperature. • Heavily cross-linked polymers (elastomers) are the most likely to show ideal rubbery behavior. • Hyperelastic constitutive laws are intended to approximate this rubbery behavior

Mechanical Behavior of Rubbers. Features of the behavior of a solid rubber:> The material is close to ideally elastic> The material strongly resists volume changes. The bulk modulus iscomparable with that of metals> The material is very compliant in shear: shear modulus is of theorder of 10-5 times that of most metals> The material is isotropic.> The shear modulus is temperature dependent: the material becomesstiffer as it is heated, in sharp contrast to metals5
• Features of the behavior of a solid rubber: Mechanical Behavior of Rubbers 5 The material is close to ideally elastic. The material strongly resists volume changes. The bulk modulus is comparable with that of metals. The material is very compliant in shear: shear modulus is of the order of 10−5 times that of most metals. The material is isotropic. The shear modulus is temperature dependent: the material becomes stiffer as it is heated, in sharp contrast to metals

Mechanical Behavior of Polymeric Foams? Polymeric foams:> Polymeric foams are close to reversible and show little rate orhistory dependence.> In contrast to rubbers, most foams are highly compressible: bulkand shear moduli are comparableStress-strainresponseoffoam>Foams have a complicated true stress-true strain response. The finite strainSresponse of the foam in compressionis quite different from that in tensionbecause of buckling in the cell walls> Foams can be anisotropic depending on their cell structure. Foamswith a random cell structure are isotropic6
• Polymeric foams: Mechanical Behavior of Polymeric Foams 6 Polymeric foams are close to reversible and show little rate or history dependence. In contrast to rubbers, most foams are highly compressible; bulk and shear moduli are comparable. Foams have a complicated true stresstrue strain response. The finite strain response of the foam in compression is quite different from that in tension because of buckling in the cell walls. Foams can be anisotropic depending on their cell structure. Foams with a random cell structure are isotropic

Strain Measure? Define the stress-strain relation for the solid by specifyingits strain energy density as a function of deformationgradient tensor: W = W(F). The general form of the strainenergy density is guided by experiment.. If W is a function of the left Cauchy-Green deformationtensor B = F-FT, the constitutive equation is automaticallyisotropic.dp(n).Invariants of Bdp(n)= BkdAu(x)(B,Bux - BikRDeformedOriginaI; = det[ B, ]= J2configurationconfiguration7
• Define the stress-strain relation for the solid by specifying its strain energy density as a function of deformation gradient tensor: W = W(F). The general form of the strain energy density is guided by experiment. • If W is a function of the left Cauchy-Green deformation tensor B = F∙FT , the constitutive equation is automatically isotropic. • Invariants of B: Strain Measure 7 1 2 2 1 2 3 1 1 2 2 det kk ii kk ik ki ik ki ij I B I B B B B I B B I B J

Strain Measure1,Bk An alternative set ofI7J2/3J213invariants of B more11(T-BT2-B.12. J4/3J4/3convenient for models ofI, = det[ B, ]= J2nearly incompressiblematerials[元?00[B,]=2200= I,=Bu=3元2,. Note that the first two0012invariants remain constantI,=(P-BBu)=324, I,=det[B,]==26under a pure volume change.→=3,7-0-3? Principal stretches and principal directions[2222B=2b, @b,+b2 ?b2 +b, @b3, B, =228
• An alternative set of invariants of B more convenient for models of nearly incompressible materials • Note that the first two invariants remain constant under a pure volume change. Strain Measure 8 1 1 2 3 2 3 2 2 2 2 1 1 4 3 4 3 4 3 2 3 1 1 2 2 det kk ik ki ik ki ij I B I J J I B B I I B B I J J J I B J 2 2 2 1 2 2 4 2 6 2 1 3 1 2 1 2 2 3 4 3 0 0 0 0 3 , 0 0 1 3 , det 2 3, 3. ij kk ik ki ij B I B I I B B I B J I I I I J J • Principal stretches and principal directions 2 1 2 2 2 2 1 1 1 2 2 2 3 3 3 2 2 3 , Bij B b b b b b b

Stress Measure and General Constitutive Law. Stress measure: dp(l) = dAn,j? Strain energy density:W(F)=U(B)=U(I1,I2,I)=U(I,I2,I)=U(, 2,) Cauchy stress in terms of deformation gradient F=y+y=aw111F.SFikSHK=a0:JaFJjk9
• Stress measure: Stress Measure and General Constitutive Law 9 j i ij dP dAn n • Strain energy density: W U U I I I U I I I U F B 1 2 3 1 2 3 1 2 3 , , , , , , • Cauchy stress in terms of deformation gradient F 0 0 0 0 0 1 1 1 1 2 n i i i i i kj jk j ji i i S V V k V ij ik i d W T v dS Fv dV S F d V v F F J v d W S F V dt J J σ F S

General Constitutive Law: Cauchy stress in terms of invariants of Bau alawaual2aual11F.HikikaFTal, aFVIal,aFal,aFikjk3ik. Derivatives of B w.r.t. F:aBaFkkkmB=F.FTB,=FF.=FF= Bu2F2Fkkkmpkkmpm/kmkm1aFaF.ijiaFaBaFpkpmkmF+FSSF.+F.S..=8F.+FSkmkpmmjkmpmkimipiKppaFaFaF1i公aB,ikS, F, +F,Oh =2FhaFij=110
• Cauchy stress in terms of invariants of B General Constitutive Law 10 1 , 2 2 2 T kk km pk pm km kk km km km ij ij ij pk pm km km pm pi mj km pm ki mj pi kj pj ki ij ij ij ik kj ij ki kj ij ii B F B F F B F F F F F F B F F F F F F F F F F F B p i F F F F B F F 1 2 3 3 1 2 3 1 1 1 ij kj jk ik ik ik jk jk jk UUU I I I F F F W S J J I F I F I F F I • Derivatives of B w.r.t. F:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 中华人民共和国国家标准:金属材料力学性能试验术语(GB/T 10623-2008)Metallic material-Mechanical testing-Vocabulary(ISO 23718,2007,MOD).pdf
- 东南大学:《固体力学基础》课程教学资源(文献资料)Hibbeler-2017-MECHANICS OF MATERIALS-TENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Gere-2009-Mechanics of Materials-SEVENTH EDITION.pdf
- 《固体力学基础》课程教学资源(文献资料)Beer-2015-Mechanics of Materials-Seventh Edition.pdf
- 《固体力学基础》课程参考文献:《材料力学史》书籍教材PDF电子版(铁木生可).pdf
- 东南大学:《固体力学基础》课程概述 Foundations of Solid Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A01 Introduction to Architectural Mechanics.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A22 Cyclic Loading and Fatigue.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A21 Dynamic Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A20 Energy Method.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A19 Column Buckling.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A18 Combined Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A17 Strength Theory.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
