东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A18 Combined Loading

Combined Loadingmi@seer.cn
Combined Loading mi@seu.edu.cn

Contents·Unsymmetric Bending(不对称弯曲)·Tension&Bending(拉弯组合)·EccentricCompression(偏心压缩)·Core of Cross-sections(截面核心区域)·CoreofRectangularCross-sections(矩形截面核心区域)·CoreofCircularCross-sections(圆形截面核心区域)·Tension&Torsion(拉扭组合)·Bending&Torsion(弯扭组合)·Tension,Bending&Torsion(拉弯扭组合)2
• Unsymmetric Bending(不对称弯曲) • Tension & Bending(拉弯组合) • Eccentric Compression(偏心压缩) • Core of Cross-sections(截面核心区域) • Core of Rectangular Cross-sections(矩形截面核心区域) • Core of Circular Cross-sections(圆形截面核心区域) • Tension & Torsion(拉扭组合) • Bending & Torsion(弯扭组合) • Tension, Bending & Torsion(拉弯扭组合) Contents 2

Introduction: A circular bar subjected to a single type of loadStressStresses Produced by Each Load IndividuallyStressesDistributionsBATorsionalTorsional shearLoadstressX(Torque )Txo = Tp/I,CTAxialB白ATensile averageFLoadAnormal stressOavg?(Force F)Cang=F/ADDBOMBending normalAPN.A--ACBstressBending门Loado, = My/lN.A(Transverse1ForceP)Transverseshear stressNATx = FsS*/1.b3
• A circular bar subjected to a single type of load 3 Introduction x z z M y I * xy z z F S I b S x p T I

Introduction: Prismatic bars are frequently subjected to several loadssimultaneously: The principle of superposition is used to determine theresultant stress & strain? Conditions for the principle of superposition- Linear elasticity & small deformation- No interaction between variously loads=100mm=100m=50mmRT-Pa1L4
• The principle of superposition is used to determine the resultant stress & strain • Prismatic bars are frequently subjected to several loads simultaneously • Conditions for the principle of superposition - Linear elasticity & small deformation 4 Introduction - No interaction between variously loads

Unsymmetric Bending:Analysis of pure bending has beenlimitedtomembers subjected to bending momentsVacting in a plane of symmetry.: Members remain symmetric and bend inthe plane of symmetryV.: The neutral axis of the cross sectioncoincides with the axis of the couple: Will now consider situations in which thebending couples do not act in a plane ofsymmetry..Cannot assumethat the memberwill bendin the plane of the couples.. In general, the neutral axis of the section willnot coincide with the axis of the couple5
Unsymmetric Bending • Analysis of pure bending has been limited to members subjected to bending moments acting in a plane of symmetry. • Will now consider situations in which the bending couples do not act in a plane of symmetry. • In general, the neutral axis of the section will not coincide with the axis of the couple. • Cannot assume that the member will bend in the plane of the couples. • The neutral axis of the cross section coincides with the axis of the couple • Members remain symmetric and bend in the plane of symmetry. 5

Unsymmetric Bending. If neutral axis passes through centroidrM.ydA0=F=|LgdA=/or 0=|LydA. Stress distributionWishtodeterminethe conditionsunderM=Mwhich the neutral axis of a cross sectionof arbitrary shape coincides with the· Moment vector must be directedaxisofthemomentasshownalong a principal centroidal axisM.Y(z)dA0=M.: The resultant force and momentfrom the distribution ofor O =[yz dA= I = product of inertiaelementary forces in the sectionmust satisfy: Superposition is applied to determinestresses in the most general case ofF, =0= M, M, = M= applied coupleunsymmetric bending.6
Wish to determine the conditions under which the neutral axis of a cross section of arbitrary shape coincides with the axis of the moment as shown. • Moment vector must be directed along a principal centroidal axis 0 or 0 product of inertia z y z yz M y M z dA I yz dA I • The resultant force and moment from the distribution of elementary forces in the section must satisfy 0 applied couple F M M M x y z • If neutral axis passes through centroid 0 or 0 z x x z M y F dA dA I y dA • Stress distribution z z z M y M M y dA I • Superposition is applied to determine stresses in the most general case of unsymmetric bending. Unsymmetric Bending 6

Unsymmetric BendingF·SignConventionax? Construct a coordinate system.: In x-y plane: positive M, results in compression for y< 0· Bending stress and deflection: o,= M,y/I,, w"=-M,/El,. The same sign conventions can be used for bending in x-z plane? Positive M, results in compression for z < 0.· Bending stress and deflection: O, = M,z/I,, w" =-M,/EIy7
, . x z z y z z M y I w M EI • Construct a coordinate system. • In x-y plane: positive Mz results in compression for y < 0. • Bending stress and deflection: • The same sign conventions can be used for bending in x-z plane. • Positive My results in compression for z < 0. • Bending stress and deflection: , . x y y z y y M z I w M EI • Sign Convention 7 z x yb h x F z y z, Fy a Unsymmetric Bending

Unsymmetric BendingFaNxM1a≤x<LM, = F,(x-CMOM1M.=Fx0<x<≤L8
, , , , 0 z z y x z y z x x x y z y y z x y M y M F x a a x L I M y M z M z I I M F x x L I 8 z x yb h x F z y z, Fy a Unsymmetric Bending

Unsymmetric Bending? Equation for Neutral axis:MM.yoZ0=0,1FMM20FZ= tanの:BFIM.I.xyoML11xtan p= tanα(y0,-0)1.1x0±αB,± 1.a±0α±VThe neutral axispasses throughthecentroid ofthecross-section.Themaximum stresses occur at the two farthest points from theneutral axis.. With the exception ofI,= I., i.e. for circular/square cross-section, the bendingstressanddeflectioncannotbecalculatedfromtheresultantmoment Bending in a single plane occurs if and only if the orientation of neural axis staysthe same for every cross-section, i.e. M./M,=constant for a prismatic beam: In general, superposition should be resorted to determine both the bending stress9and the deflection
• Equation for Neutral axis: 0 0 0 0 0 tan tan ta 0 n z y x z y y y z z zy y z y z y y z z M y M z I I z I I x a y I x I I I x a I x M M I F F I a I • The neutral axis passes through the centroid of the cross-section. • The maximum stresses occur at the two farthest points from the neutral axis. • With the exception of Iy = Iz , i.e. for circular/square cross-section, the bending stress and deflection cannot be calculated from the resultant moment. • Bending in a single plane occurs if and only if the orientation of neural axis stays the same for every cross-section, i.e. Mz /My=constant for a prismatic beam. • In general, superposition should be resorted to determine both the bending stress and the deflection. 9 y z 0 0 , M y M z Fy F z z y Unsymmetric Bending

Sample ProblemSOLUTION:1600 lb -in.30°. Resolve the couple vector intocomponents along the principlecentroidal axes and calculate the3.5 in.correspondingmaximumstresses.Combinethe stressesfrom thecomponent stressdistributions1.5in. Determine the angle of the neutral axisA 1600 lb-in couple is applied to arectangular wooden beam in a planeforming an angle of 30 deg. with thevertical.Determine (a)themaximumstressinthebeam,(b)theanglethattheneutral axis forms with the horizontalplane.10
A 1600 lb-in couple is applied to a rectangular wooden beam in a plane forming an angle of 30 deg. with the vertical. Determine (a) the maximum stress in the beam, (b) the angle that the neutral axis forms with the horizontal plane. SOLUTION: • Resolve the couple vector into components along the principle centroidal axes and calculate the corresponding maximum stresses. • Combine the stresses from the component stress distributions. • Determine the angle of the neutral axis. Sample Problem 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A17 Strength Theory.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A16 Stress State.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A15 Indeterminate Problem(Statically Indeterminate Structures).pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A14 Bending Deflection.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A13 Bending Stress.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A11 Torsion.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A10 Shearing and Bearing Stress.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A09 Axial Loading Concept of Stress & Strain.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A08 Introduction to MoM.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A07 Moments and Product of Inertia.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A06 Centroids and Centers of Gravity.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A05 Analysis of Structures.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A04 Equilibrium of Rigid Bodies.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A03 Equivalent Systems of Forces.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A02 Statics of Particles.pdf
- 《中外建筑史》课程教学大纲 Chinese and Foreign Architecture History.doc
- 江苏科技大学:《钢结构设计原理课程设计》课程教学大纲 Principles of Steel Structure Course Design.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)06 城市空间设计.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)05 城市设计的分析方法.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)04 城市设计的理论思潮.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A19 Column Buckling.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A20 Energy Method.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A21 Dynamic Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A22 Cyclic Loading and Fatigue.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A01 Introduction to Architectural Mechanics.pdf
- 东南大学:《固体力学基础》课程概述 Foundations of Solid Mechanics.pdf
- 《固体力学基础》课程参考文献:《材料力学史》书籍教材PDF电子版(铁木生可).pdf
- 《固体力学基础》课程教学资源(文献资料)Beer-2015-Mechanics of Materials-Seventh Edition.pdf
- 《固体力学基础》课程教学资源(文献资料)Gere-2009-Mechanics of Materials-SEVENTH EDITION.pdf
- 东南大学:《固体力学基础》课程教学资源(文献资料)Hibbeler-2017-MECHANICS OF MATERIALS-TENTH EDITION.pdf
- 中华人民共和国国家标准:金属材料力学性能试验术语(GB/T 10623-2008)Metallic material-Mechanical testing-Vocabulary(ISO 23718,2007,MOD).pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学中英文索引对照(Beer第六版,Beer 6e Mechanics of Materials Index).pdf
- 《固体力学基础》课程教学资源(文献资料)材料力学部分专业术语中英文对照 Selected Technical Terms in Mechanics of Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
