东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A06 Centroids and Centers of Gravity

Centroids & Centers of Gravity
Centroids & Centers of Gravity

Contents·Introduction(绪论)·CenterofGravityofa2DBody(两维物体的重心)·Centroids and First Moments of Areas(形心与面积的一次矩)·CentroidsofCompositeAreas(组合面积的形心)·Determination ofCentroids by Integration(积分法求形心)·CentroidsofCommonShapesofAreas(常见平面图形的形心)2
Contents • Introduction(绪论) • Center of Gravity of a 2D Body(两维物体的重心) • Centroids and First Moments of Areas(形心与面积的一次矩) • Centroids of Composite Areas(组合面积的形心) • Determination of Centroids by Integration(积分法求形心) • Centroids of Common Shapes of Areas(常见平面图形的形心) 2

Lntroduction. The earth exerts a gravitational force on each of the particlesforming a body. These forces can be replaced by a singleequivalent force equal to the weight of the body and applied at thecenter of gravity for the body. The centroid of an area is analogous to the center of gravity of abody. The concept of the first moment of an area is used to locatethe centroid.3
Introduction • The earth exerts a gravitational force on each of the particles forming a body. These forces can be replaced by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body. • The centroid of an area is analogous to the center of gravity of a body. The concept of the first moment of an area is used to locate the centroid. 3

Center of Gravity of a 2D Body.Center of gravity of a plateAZ,=x=xa=J xdWZM,=JW-y,AW=J ydw4
Center of Gravity of a 2D Body • Center of gravity of a plate y i i x i i M xW x W xdW M yW y W ydW 4

Centroids and First Moments of Areas.Centroid ofan area (assuminguniformthicknessanddensity)xW=[xdWx(pgAt)=[x(pgt)dAxA=[xdA=S,= first moment with respect to yyA=[ydA=Sx= first moment with respectto x5
Centroids and First Moments of Areas first moment with respect to first moment with respect to y x xW x dW x gAt x gt dA xA x dA S y yA y dA S x • Centroid of an area (assuming uniform thickness and density) 5

Centroids and First Moments of AreasB. An area is symmetric with respect to an axis BBif for every point P there exists a point P'suchthat PP'is perpendicular to BB'and is dividedinto two equal parts by BB'.B(a).Thefirstmoment ofanareawithrespecttoaline of symmetry is zero..If an area possesses a line of symmetry,itscentroid lies on that axis. If an area possesses two lines of symmetry, itsBcentroid lies at their intersection..An area is symmetric with respect to a center Oif for every element dA at (x,y) there exists anarea dA' of equal area at (-x,-y). The centroid of the area coincides with thecenterof symmetry6
Centroids and First Moments of Areas • An area is symmetric with respect to an axis BB’ if for every point P there exists a point P’ such that PP’ is perpendicular to BB’ and is divided into two equal parts by BB’. • The first moment of an area with respect to a line of symmetry is zero. • If an area possesses a line of symmetry, its centroid lies on that axis • If an area possesses two lines of symmetry, its centroid lies at their intersection. • An area is symmetric with respect to a center O if for every element dA at (x,y) there exists an area dA’ of equal area at (-x,-y). • The centroid of the area coincides with the center of symmetry. 6

Centroids of Composite Areas·CompositeplatesW3XEW=Ex,WWWYw=Zyw,G3TyEAsCompositeareaC3AZAXZA=ZXAAXYZA-ZJAI7COO7
Centroids of Composite Areas • Composite plates i i i i X W xW Y W yW • Composite area i i i i X A x A Y A y A 7

Sample ProblemS.=xdA= Ax( ydA = AyS,=S,-ZSx=ZA ; S,=-Z4x,100i=1i=1yOiC1120一ZA,x,S10×2000 +(20 + 70)×2800i=lx :AA2000+2800= 56.66140n≥4J.S正i=l=50yAA---12X-8
1 1 1 ; n n n x xi i i y i i i i S S A y S A x 1 1 10 2000 20 70 2800 2000 2800 56.66 50 n i i y i n i i x i A x S x A A A y S y A A x y A A S ydA Ay S xdA Ax O x 100 y 20 20 140 C C1 C2 Ⅰ Ⅱ Sample Problem 8

Sample ProblemSOLUTION:y120mm: Divide the area into a triangle, rectangleand semicircle with a circular cutout.60mm40mm.Calculate the first moments of eacharea80mmwithrespecttothe axes.x.Findthetotal areaandfirstmoments of60mm+the triangle, rectangle, and semicircle.Subtract the area and first moment of thecircularcutout.For the plane area shown, determinethe first moments withrespect to the·Compute the coordinates of the areax and y axes and the location of thecentroid by dividingthe first moments bycentroid.the total area.9
For the plane area shown, determine the first moments with respect to the x and y axes and the location of the centroid. SOLUTION: • Divide the area into a triangle, rectangle, and semicircle with a circular cutout. • Compute the coordinates of the area centroid by dividing the first moments by the total area. • Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout. • Calculate the first moments of each area with respect to the axes. Sample Problem 9

yy4r1=25.46mm120mmri=60mm3元ri=40mm=60mm60mm十+rg=40mm40mm105.46mm80mm80mm80mm140mmxxxx60mm60mm60mm20mmyA,mm3xA, mm3A, mm?x, mmy, mmComponent+384×10360+576×103(120)(80)=9.6×10340Rectangle-72×103+144×103(120)(60)=3.6×10340-20Triangle+596.4×103+339.3×103元(60)2=5.655×10360105.46Semicircle-402.2×103-301.6×1036080-(40)2=-5.027×103CircleZyA=+506.2×103XA=+757.7×103ZA=13.828×103S, = +506.2×103mm3Find the total area and first moments of thetriangle,rectangle,and semicircle.SubtracttheS, = +757.7×103mm3areaandfirstmomentofthecircularcutout10
3 3 3 3 506.2 10 mm 757.7 10 mm x y S S • Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout. 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A05 Analysis of Structures.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A04 Equilibrium of Rigid Bodies.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A03 Equivalent Systems of Forces.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A02 Statics of Particles.pdf
- 《中外建筑史》课程教学大纲 Chinese and Foreign Architecture History.doc
- 江苏科技大学:《钢结构设计原理课程设计》课程教学大纲 Principles of Steel Structure Course Design.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)06 城市空间设计.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)05 城市设计的分析方法.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)04 城市设计的理论思潮.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)03 城市设计的控制要素.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)02 城市设计的基本特征.pdf
- 惠州学院:《城市设计》课程教学课件(讲稿)01 城市设计概念的发展.pdf
- 惠州学院:《城市设计》课程教学大纲 Urban Design.pdf
- 江苏科技大学:船舶工业《混凝土结构设计原理》课程教学大纲.pdf
- 江苏科技大学:船舶工业《钢结构设计原理课程设计》课程教学大纲 Principles of Steel Structure Course Design.pdf
- 《水工混凝土结构》课程教学资源(思政课件)绪论 Hydraulic Concrete Structure.pdf
- 《水工混凝土结构》课程教学资源(思政课件)轴心受压柱设计.pdf
- 南京工业大学:单桩竖向抗压静载虚拟仿真实验教学指导书.pdf
- 《水工混凝土结构》课程教学资源(思政课件)单筋矩形截面梁板正截面承载力计算.pdf
- 《水工混凝土结构》课程教学资源(思政课件)梁、板的构造知识.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A07 Moments and Product of Inertia.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A08 Introduction to MoM.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A09 Axial Loading Concept of Stress & Strain.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A10 Shearing and Bearing Stress.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A11 Torsion.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A13 Bending Stress.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A14 Bending Deflection.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A15 Indeterminate Problem(Statically Indeterminate Structures).pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A16 Stress State.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A17 Strength Theory.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A18 Combined Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A19 Column Buckling.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A20 Energy Method.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A21 Dynamic Loading.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A22 Cyclic Loading and Fatigue.pdf
- 东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A01 Introduction to Architectural Mechanics.pdf
- 东南大学:《固体力学基础》课程概述 Foundations of Solid Mechanics.pdf
- 《固体力学基础》课程参考文献:《材料力学史》书籍教材PDF电子版(铁木生可).pdf
- 《固体力学基础》课程教学资源(文献资料)Beer-2015-Mechanics of Materials-Seventh Edition.pdf
- 《固体力学基础》课程教学资源(文献资料)Gere-2009-Mechanics of Materials-SEVENTH EDITION.pdf
