中国高校课件下载中心 》 教学资源 》 大学文库

东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A14 Bending Deflection

文档信息
资源类别:文库
文档格式:PDF
文档页数:78
文件大小:2.06MB
团购合买:点击进入团购
内容简介
东南大学:《建筑力学 Architectural Mechanics》课程教学课件(英文讲稿)A14 Bending Deflection
刷新页面文档预览

Bending Deflectionmi@see.cn

Bending Deflection mi@seu.edu.cn

Contents·TheElasticCurve,Deflection&Slope(挠曲线、挠度和转角)·DifferentialEquationoftheElasticCurve(挠曲线微分方程)·Deflection&SlopebyIntegration(积分法求挠度和转角)·BoundaryConditions(边界条件)·SymmetryConditions(对称性条件)·ContinuityConditions(连续性条件)·DirectIntegrationfromDistributedLoads(直接由分布荷载积分求挠度和转角)·DirectIntegrationfromTransverseLoads(直接由剪力积分求挠度和转角)·DeformationsinaTransverseCrossSection(梁横截面内的变形)·CurvatureShortening(梁由于弯曲造成的轴向位移)2

• The Elastic Curve, Deflection & Slope (挠曲线、挠度和转角) • Differential Equation of the Elastic Curve(挠曲线微分方程) • Deflection & Slope by Integration(积分法求挠度和转角) • Boundary Conditions(边界条件) • Symmetry Conditions(对称性条件) • Continuity Conditions(连续性条件) • Direct Integration from Distributed Loads(直接由分布荷载积分求 挠度和转角) • Direct Integration from Transverse Loads(直接由剪力积分求挠度 和转角) • Deformations in a Transverse Cross Section(梁横截面内的变形) • Curvature Shortening(梁由于弯曲造成的轴向位移) Contents 2

Contents·Deflection&SlopebySuperposition(叠加法求挠度和转角)·SuperpositionofLoads(荷载叠加法)·SuperpositionofRigidized Structures(刚化叠加法)·CombinedSuperposition(荷载和变形组合叠加法)·Deflection&SlopebySingularFunctions(奇异函数法求挠度和转角)·Deflection&SlopebyMoment-AreaTheorems(图乘法求挠度和转角)·StiffnessCondition(刚度条件)·WaystoIncreaseFlexuralRigidity(梁的刚度优化设计)·BendingStrainEnergy(弯曲应变能)3

• Deflection & Slope by Superposition(叠加法求挠度和转角) • Superposition of Loads(荷载叠加法) • Superposition of Rigidized Structures(刚化叠加法) • Combined Superposition(荷载和变形组合叠加法) • Deflection & Slope by Singular Functions(奇异函数法求挠度和转 角) • Deflection & Slope by Moment-Area Theorems(图乘法求挠度和转 角) • Stiffness Condition(刚度条件) • Ways to Increase Flexural Rigidity(梁的刚度优化设计) • Bending Strain Energy(弯曲应变能) Contents 3

The Elastic Curve, Deflection and Slope. The elastic curve: beam axis under bending, required todetermine beam deflection and slope: Bending deflections (w = f(x)): vertical deflection of the neutralsurface, defined as downward positive / upward negative: Slope (0 = 0(x) ~ tan(0) = dw/dx): rotation of cross-sectionsdefined as clockwise positive / counter clockwise negative0wxDeflectioncurvewI4

• The elastic curve: beam axis under bending, required to determine beam deflection and slope. x w w  Deflection curve The Elastic Curve, Deflection and Slope • Bending deflections (w = f(x)): vertical deflection of the neutral surface, defined as downward positive / upward negative. • Slope (θ = θ(x) ≈ tan(θ) = dw/dx): rotation of cross-sections, defined as clockwise positive / counter clockwise negative 4

Differential Eguation of the Elastic Curve.Curvature of the neutral surface11wM(x)K2)3/2p(x)(l + wEIp(x)xxM0MMM w">O Mw"<0WWEIw"=-MEl: flexural rigidity: The negative sign is due to the particular choice of the w-axis5

• Curvature of the neutral surface EIz M x x ( ) ( )   1 2 3/2 1 ( ) (1 ) w w x w            EIw M    w x M M M  0 w   0 w x M  0 M w   0 M EI: flexural rigidity Differential Equation of the Elastic Curve 5 • The negative sign is due to the particular choice of the w-axis

Deflection and Slope by IntegrationEIw" = -M(x)EIw' =-/ M(x)dx +CElw = -{ [ M(x)dxdx +Cx + D: Conventionally assuming constant flexural rigidity (E) Integration constants C and D can be determined from boundaryconditions, symmetry conditions, and continuity conditions6

EIw   M(x) EIw    M x x C  ( )d EIw   M(x)dxdx Cx  D • Integration constants C and D can be determined from boundary conditions, symmetry conditions, and continuity conditions. Deflection and Slope by Integration • Conventionally assuming constant flexural rigidity (EI) 6

Boundary Conditions - Simple Beams30kN/m30kN/m30kN·mBCA2m2m11. Deflections are restrained at the hinged/rolled supports=W^=0; W=01

0; 0    w w A B Boundary Conditions – Simple Beams • Deflections are restrained at the hinged/rolled supports 7

Boundary Conditions- Cantilever BeamsmAT. Both the deflection and rotation are restrained at theclamped end=W=0; =08

0; 0    wA A  8 Boundary Conditions- Cantilever Beams • Both the deflection and rotation are restrained at the clamped end

Symmetry Conditions? Both the geometry andloads are symmetric aboutBthe mid-section (x = L/2)L=→=02L2l2qM123EBDCAB219

Symmetry Conditions • Both the geometry and loads are symmetric about the mid-section (x = L/2) 0   C 9

Continuity ConditionswPAB1aX2LL0≤ ≤a,α≤x≤L,O≤≤L-αw(x =a)=w(x2 =a); Φ(x =a)=0(x2 =a)w(x =a)=w(x =L-a); (xi =α)=-0(x =L-α10

Continuity Conditions                 1 2 3 1 2 1 2 1 3 1 3 0 , , 0 ; ; x a a x L x L a w x a w x a x a x a w x a w x L a x a x L a                           10 P

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档