东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates

Two-Dimensional Problemsin Polar Coordinates
Two-Dimensional Problems in Polar Coordinates

Outline.Polar Coordinate FormulationAxisymmetric Solutions toBiharmonicEquationsCylinders under Boundary PressuresHole in Infinite MediaPure Bending of Curved BeamsRotating Disk/Cylinder ProblemGeneral Solutions to Biharmonic equationStress Concentration around a HoleTransverse Bending of Curved BeamsWedge ProblemsQuarter-Plane ProblemsHalf-Plane Problems2
Outline • Polar Coordinate Formulation • Axisymmetric Solutions to Biharmonic Equations • Cylinders under Boundary Pressures • Hole in Infinite Media • Pure Bending of Curved Beams • Rotating Disk/Cylinder Problem • General Solutions to Biharmonic equation • Stress Concentration around a Hole • Transverse Bending of Curved Beams • Wedge Problems • Quarter-Plane Problems • Half-Plane Problems 2

Polar Coordinate Formulation - ReviewStrain-Displacementougou1 u.ue2a0a02OrarrrHooke's Law3-K13-Kd0ap = 2GSGapOOapaβαβaβry2G42(1-x)(1+x)(1 + x)13- x13- x1oO60Gr000Oro2G2G2G441+ K1+KGG+x)。 +(3-)c,),Tro= 2G8ro)8, +(3-x)8(1-3-VFor plane strain: K = 3- 4v; For plane stress: 1+v3
Polar Coordinate Formulation – Review • Strain-Displacement • Hooke’s Law 1 1 1 , . 2 r r r rr u u u u u u r r r rr θ θ θ θ θ εε ε θ θ ∂ ∂ ∂ ∂ = = + = −+ ∂ ∂ ∂∂ 3 3 For plane strain: 3 4 ; For plane stress: . 1 ν κ ν κ ν − = − = + ( ) ( ) ( ) ( ) (( ) ( ) ) ( ) (( ) ( ) ) 1 3 3 2 2 4 2 1 13 13 1 1 1 , , . 24 1 24 1 2 1 3 , 1 3 , 2. 1 1 r r rr r r r rr r G G GG G G G G αβ αβ γγ αβ αβ αβ γγ αβ θ θ θ θ θ θ θ θ θ θ κ κ ε σ σδ σ ε εδ κ κ κ κ κ ε σ σε σ σε τ κ κ σ κε κε σ κε κε τ ε κ κ − − = − =− − + + − − = −= − = + + =− + + − =− + + − = − −

Polar Coordinate Formulation - ReviewEquilibrium equations00,+10tre +,-0e+F, = 0atre100.2tre + E= 0Orr a0Orr a0rrBeltrami-Michell equation4aFF1 aFV?(, +0。)r 00Or1+K2Navier's equation2GV(V·u)+F = 0.GV?u1-Ka'u.1 'u,22Ga1ou,OueOurur10ueu,-F=0r2Or2002r2r200rrOr001-x rrr1 0"ueo'ue2a10ueour2G 1our1ougUgur=0002r2r2Or?r2a0Orara0r1-xr001r4
Polar Coordinate Formulation – Review 1 1 2 0, 0. r rr r r F F r rr r rr r θ θ θ θθ θ σ τ σσ τ σ τ θ θ ∂∂ − ∂ ∂ + + += + + += ∂ ∂ ∂ ∂ ( ) 2 4 1 . 1 r r r F F F r rr θ σ σθ κ θ ∂ ∂ ∇ + =− + + +∂ ∂ 4 • Equilibrium equations • Beltrami-Michell equation ( ) 2 2 2 2 22 2 2 2 2 2 22 2 2 2 0. 1 11 2 2 1 0, 1 1 1 2 21 1 0. 1 r r r r r r r r r r G G u u u u uu u u G G F r rr r r r r r r r uu u u u G u u u G F r rr r r r r r r r θ θ θθ θ θ θ θ κ θθ κ θ θ θ κθ θ ∇ − ∇ ∇⋅ + = − ∂∂∂ ∂ ∂ ∂ ∂ + + − − − ++ += ∂ ∂ ∂ ∂ −∂ ∂ ∂ ⇒ ∂∂∂ ∂ ∂ ∂ ∂ + + + − − ++ += ∂ ∂ ∂ ∂ − ∂∂ ∂ u uF • Navier’s equation

Polar Coordinate Formulation - Review?Airy Stress Function representationa2022a211 a12(1-x)a21 01aOr200200212Or2r.2aer orr Or1+xOra'ya'y1a1ay1ayaOOOr?P6a02r2Orr orr0. Traction boundary conditionsCRf,(r,0) = T(") =0,n, + Tronefo(r,0)=T(") =Tron, +Ogne. Without body forces, the plane problem is then reducedto a single governing biharmonic equation5
( ) 2 2 2 2 2 22 2 22 2 2 2 2 2 2 2 22 2 11 11 1 1 1 , . 2 1 1 1 . 1 r r r rr r r rr r r r r r r r V r rr r V V θ θ ψ θ θ ψψ ψ ψ σ σσ θ θ κ κ θ − ∂∂∂ + + ∂ ∂ ∂∂ ∂ ∂ ++ ++ = ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = +∂ ∂ ∂ + == − ∂ ∂ ∂ ∂∂ + + R S x y θ r • Airy Stress Function representation ( ) ( ) (, ) (, ) r r rr r r r fr T n n fr T n n θ θ θ θ θ θθ θ στ θ τσ = = + = = + n n • Traction boundary conditions • Without body forces, the plane problem is then reduced to a single governing biharmonic equation. 5 Polar Coordinate Formulation – Review

Axisymmetric Solutions. Navier's Displacement Formulation (without body forces)(r)er, F=0.u=u."u,2G12ougaou10uuuO-r2002ao1-x OrararaeAO1 g2 Qu,au2G 11 OugauuOue+F=0.Or20000r200ar1-kr00arrrrDisplacement fielddudduduuuur.=2C,→u.=CdrdrdrdrYrA Strain and stress fieldOu1-arOug1+K)c+(3-K)6aeouaue1Tr=2G8ro=0Ue1naeOrr6
( ) 2 2 2 22 2 , . 11 2 r r rr r u r uu u u G r rr r r θ θ θ = = ∂∂ ∂ ∂ ++ − ∂∂∂ ∂ u e F0 2 2 1 1 r r r u uu G u r rrrr θ κ θ ∂ ∂ ∂ − − ++ −∂ ∂ ∂ Fr + 2 2 2 22 2 2 0, 1 1 2 21 1 0. 1 r r r uu u u u G u u u G F r rr r r r r r r r θθ θ θ θ θ θ θ κθ θ = ∂∂∂ ∂ ∂ ∂ ∂ + + + − − ++ += ∂ ∂ ∂ ∂ − ∂∂ ∂ Axisymmetric Solutions • Navier’s Displacement Formulation (without body forces) 1 1 12 1 0 2 r r r r r r r d du u du u du u C C u Cr C dr dr r dr r dr r r ⇒ + =⇒ + = ⇒ + = ⇒ = + • Displacement field • Strain and stress field ( ) (( ) ( ) ) ( ) (( ) ( ) ) 1 2 2 1 2 2 1 2 2 2 1 2 2 1 1 13 2 , , 1 1 1 1 2 1 , 13 2 , 1 1 1 1 2 0. 0. 2 r r r r r r r r r r r u G C C G CC r r r u G u CC G CC r r r u u u G r rr θ θ θ θ θ θ θ θ θ θ σ κε κε ε σ κ κ ε σ κε κε θκ κ τ ε ε θ ∂ = = − =− + + − =− + = ∂ − − ∂ = + = + ⇒ =− + + − =− − ⇒ ∂− − ∂ ∂ = = = −+ = ∂ ∂ 2 2 , , 0. r A B r A B r θ θ σ τ + =− + = 6

Axisymmetric Solutions? Airy Stress Formulation (without body forces02d?11a1 da21dd72+Or.2dr200?r orr drr drdr1 d()]1-0r drd1 ddydy1-4 = 死[(au=二1Alnr+Br drr drdrdrdrdrddydy= Ar? nr+B,r? +CArlnr+Br =drdrdrdyArlnr+Br+= = y= Ar? Inr+B,r? +Clnr+Ddry=a+a lnr+a,r?+a,r?Inr7
Axisymmetric Solutions 2 2 2 2 2 2 1 1 r rr r θ ∂∂ ∂ ∇= + + ∂∂∂ 2 2 4 2 2 1 1 1 1 1 0 1 11 ln ln ln 1 d d dd r dr r dr r dr dr d d r r dr dr d dd d dd A dd r rA d r r ArB dr r dr dr dr r dr dr r r dr dr d d d r Ar r Br r A r r B r C dr d d r r dr r dr dr ψ ψ ψψ ψ ψ ψ =+ = ⇒∇ = = ⇒ =⇒ =⇒ = + ⇒ = +⇒ = + + ⇒ 2 2 1 1 2 2 0 2 2 1 23 ln ln ln ln ln d C Ar r Br Ar r B r C r D dr r a a r ar ar r ψ ψ ψ = + +⇒= + + + + + + ⇒ = • Airy Stress Formulation (without body forces) 7

Axisymmetric Solutions. Stress and strain fieldy=a+a,lnr+ar? +ar?Inr11ay[0, =号+2a, +a,(1+21nr)rr不a24+2a, +a,(3+2lnr)-O2Tro=0O00(4(2-K)(1+x)(1+x)4114(13-KaKoaa42G42G1+x r?1+x1+ K1+ K1+K41 (1+x)(1(1+x)4x3x4(1-x)a,4(1-C+a2G42G41+x r21+K1+K1+K1+x1=0.GreTro2G8
2 2 01 2 3 2 2 2 ln ln 1 1 r a a r ar ar r rr r ψ ψ ψ σ θ =+ + + ∂ ∂ = + ∂ ∂ 2 2 , , 1 r r r r θ θ ψ σ ψ τ θ ∂ = ∂ ∂ ∂ = − ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 2 3 1 2 2 3 1 2 2 3 1 2 1 2ln 2 3 2ln 0 . 1 314 1 1 41 42 41 ln , 2 4 1 2 41 1 1 1 1 31 4 1 1 24 1 24 1 r r r r r a aa r r a aa r r a a a r G G r a G G θ θ θ θ θ σ σ τ κ κ κ κ κκ ε σσ κ κ κ κκ κ κ κ ε σσ κ κ =+ + + ⇒ =− + + + = + − + − −− = −= − − + + + + ++ + + − ⇒= − = − + + ( ) ( ) 2 2 3 4 1 4 4 1 ln , 1 11 1 0. 2 r r a a r r G θ θ κ κ κ κ κκ ε τ − − − +− + ++ = = Axisymmetric Solutions • Stress and strain field 8

Axisvmmetric Solutions. Displacement field+(1-x)a,r+a,(r+(1-x)rlnr))+f(0)u, =[s,dr =2G1+K-- () + ()u。= [(reg-u,)deIde=r-f(0))142G(1ouaugue0=8= f'(0)+[ f(0)d0-g(r)+rg'(r)=02r00Or= f'(0)+[f(0)d0=g(r)-rg'(r)=K = g(r)=0r+K, f(0)=u cos+v。sin1(+(1-x)a,r+a, (r+(1-x)rlnr)+u, cos0 +v, sinou.2G1+ xagr-u, sino+v。cos0+o.r+K,K=0e2G. Identification of rigid-body displacements in polar coordinatescosesin[ coso(-o.rsino+u.)+sino(o.rcoso+v.) 1)u.cos+ysino-oy+u-sino coso[-sino(-の.rsing+u.)+coso(orcos+v.))[-u sin+v。cosの+or0x+v9
( ) ( ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 3 3 1 1 1 ln 2 1 1 2 2 1 1 0 0 2 , co s s in 1 r r r r r o o o r a u dr a r a r r r f G r u r u d ar f d ar f d g r G G u u u f f d g r rg r r rr f f d g r rg r g r r f u v K K u θ θ θ θ θ ε κ κθ κ κ ε θ θ θ θ θθ ε θ θθ θ θ θθ ω θ θ θ = =− + − + + − + + + =− = − = − + ∂ ∂ = = −+ ⇒ + − + = ′ ′ ∂ ∂ ⇒ + =− ⇒ = = ′ ′ = + = − + ⇒ ∫ ∫ ∫ ∫ ∫ ∫ ( ) ( ( ) ) 1 2 3 3 1 1 ln cos sin 2 1 sin cos 2 o o oo o a ar a r r r u v G r u ar u G θ v r K κ κ θθ κ θ θ θω +− + +− + + + =− + + + , K ≡ 0 • Displacement field Axisymmetric Solutions ( ) ( ) ( ) ( ) cos sin cos sin sin cos cos sin sin cos sin sin cos cos sin cos o o oo o o o o o o oo o o o o o y u ru r v u v x v ru r v u v r θ θ ω θ ω θ θω θ θ θ θ θ ω θ ω θ θω θ θ θω − + − ++ + + = = − + − − ++ + −+ + • Identification of rigid-body displacements in polar coordinates 9

Axisymmetric Solutions. Stress formulation.Displacementformulation4+2a, +a,(1+2lnr),一a=u,=C4 +2a, +a,(3+2 lnr)u。= 0. (assumed)+(1-x)a,r+u.coso+vsine2G+a, (r+(1-x)rlnr)1+Karo-u。sino+vcoso+o.rue2G The displacement formulation does not contain the logarithmicterms. Thus, these terms are not consistent with single-valueddisplacements. The compatibility condition is not sufficientThe a, term leads to multivalued behavior, and is not foundfollowing the displacement formulation approach.. The candidacy of individual terms depend on domain singularity10
Axisymmetric Solutions • Displacement formulation • Stress formulation ( ) 1 2 1 2 2 1 2 2 0. assumed 1 , 2 1 2 , 1 2 1 2 . 1 r r u Cr C r G CC r C r u θ G C θ σ κ σ κ = + =− + − =− − = − ( ) ( ) ( ) ( ( ) ) 1 2 2 3 1 2 2 3 1 2 3 3 2 1 2ln , 2 3 2ln . 1 1 cos sin , 2 1 ln 1 sin cos . 2 r r o o oo o a aa r r a aa r r a a r u r u v G ar r r u ar u v r G θ θ σ σ κ θ θ κ κ θ θ θω =+ + + =− + + + + − = − + + + +− + = −++ • The displacement formulation does not contain the logarithmic terms. Thus, these terms are not consistent with single-valued displacements. The compatibility condition is not sufficient. • The a3 term leads to multivalued behavior, and is not found following the displacement formulation approach. • The candidacy of individual terms depend on domain singularity. 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)03 Stress Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)02 Strain Measures.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)01 Mathematical Preliminary.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)桥梁抗震习题答案(789).pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(结构动力学概述).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第6章 桥梁减隔震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第4章 桥梁工程抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第5章 桥梁延性抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第3章 桥梁抗震概论.pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(单自由度体系的振动分析).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第2章 桥梁震害.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第1章 地震概述.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第一讲 中国历史建筑发展概况.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第二讲 中国传统建筑基本特征.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第三讲 城市建设史.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第四讲 宫殿建筑.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第五讲 坛庙建筑.pdf
