东南大学:《弹性力学》课程教学课件(英文讲稿)12 Bending of Thin Plates

Bending of Thin Plates
Bending of Thin Plates

OutlineIntroductionElementary Beam TheoryAssumptions Formulation in terms of DeflectionInternal Force per Unit Length Relations between Internal Force and Stress Differential Element Equilibrium - Alternative ApproachBoundary ConditionsBoundaryEquationSchemeFourier Method Summary2
Outline • Introduction • Elementary Beam Theory • Assumptions • Formulation in terms of Deflection • Internal Force per Unit Length • Relations between Internal Force and Stress • Differential Element Equilibrium – Alternative Approach • Boundary Conditions • Boundary Equation Scheme • Fourier Method • Summary 2

Introduction: One dimension (thexthickness) is significantlysmaller than the other twot/2t/2(1/8-1/5) > t/b > (1/80-1Middle Surface1/100)Middle Surface: z = O0: Only subjected to transversloads.: If a plate is only subjected to longitudinal loads, theproblem is reduced to plane stress state. The bending problem of thin plates is analyzed withstrategies similar to those of elastic beams.3
• One dimension (the thickness) is significantly smaller than the other two. (1/8-1/5) > t/b > (1/80- 1/100) • Middle Surface: z = 0. • Only subjected to transvers loads. Introduction • If a plate is only subjected to longitudinal loads, the problem is reduced to plane stress state. • The bending problem of thin plates is analyzed with strategies similar to those of elastic beams. 3 t/2 t/2 x y z O Middle Surface b

Review of the Elementary Beam Theory: Plane sections normal to the longitudinal axis of thebeam remain planar.Only uniaxial longitudinal stress is assumed.3MdWEIEIMqdx?2dxdx4
Review of the Elementary Beam Theory • Plane sections normal to the longitudinal axis of the beam remain planar. • Only uniaxial longitudinal stress is assumed. 2 2 2 2 2 2 d d d , d d d w w EI M EI q x x x 4

Assumptions2Straight lines normal to the middle surface112Oremain straight and the same lengthB11/2AStress components acting on planesparallel to the middle surface aresignificantly smaller than othercomponents. The corresponding strain cantherefore be neglectedow0=w = w(x, y)OOzuowOwOu10=U2OzOxaxOzowavavOw-0=I8zy2Ozazdyya.-v(ax1+0Discard:8=E2G2G5
Assumptions 0 ( , ) 1 0 2 1 0 2 ( ) 1 1 Discard: , , . 2 2 z z x z y z x y z zx zx zy zy w w w x y z u w u w z x z x w v v w y z z y E G G 5 t/2 t/2 t/2 • Straight lines normal to the middle surface remain straight and the same length. • Stress components acting on planes parallel to the middle surface are significantly smaller than other components. The corresponding strain can therefore be neglected

AssumptionsConstitutive relations-voPEE2G The middle surface of the plate is not strained duringbendingOu02=0=OxCuav= 0ay=0(v). 二=0ovOu02Ox=0ay=06
• Constitutive relations • The middle surface of the plate is not strained during bending. 1 1 1 ( ), ( ), . 2 x x y y y x xy xy E E G Assumptions 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 x z z z y z z z x y z z u x u v v y v u x y 6

Governing Equation in terms of Deflection w(x, y): Longitudinal displacements formulated in terms of thevertical deflection w = w(x,y)auOwOwOwz+f(x,y)u:uZOzaxOxax二UavawOwOw.yyVZ-+tOzayayay=0(u).-0fi(x, y) = 0((v):=0 = 0f,(x,y)= 0Longitudinal strains in terms of wa?wQuawOvawdyduos88LaxavaxayOxoya7
1 ( , ) u w w u z f x y z x x v w z y 2 ( , ) w v z f x y y 0 1 0 2 ( ) 0 ( , ) 0 ( ) 0 ( , ) 0 z z w u z x w v z y u f x y v f x y Governing Equation in terms of Deflection w(x, y) • Longitudinal displacements formulated in terms of the vertical deflection w = w(x,y) • Longitudinal strains in terms of w 2 2 2 2 2 1 , , 2 x y xy u w v w v u w z z z x x y y x y x y 7

Governing Equation in terms of Deflection w(x, y): Longitudinal stresses in terms of wa"wa"wEzEa1-v2ay?+Voax?oS1-1awa?wEEz+V8aS0ax?Qy?1-v21-EawEzt.8xvT(1 +v)xy1+vaxyTransvers shear stresses in terms of wa3watyxataxEzEzaOtxa'waa1 - v21 - v2x3OzOxoy2axOzaxay2Ot.daOt.atya"wa"waEzEzZ1xyOzayaxOzOyox?1-v2Oy3oy1 - v2IntegrateW.r.t z:8
2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) 1 1 ( ) 1 1 (1 ) 1 x x x y y y x y xy xy x y Ez w w E x y E Ez w w y x E Ez w x y • Longitudinal stresses in terms of w • Transvers shear stresses in terms of w 3 3 2 2 3 2 2 3 3 2 2 3 2 2 1 1 1 1 Integrate w.r.t zx x y x z x zy y xy z y Ez w w Ez w z x y z x x y x Ez w w Ez w z y x z y y x y z Governing Equation in terms of Deflection w(x, y) 8

Governing Equation in terms of Deflection w(x, y)Transvers shear stresses in terms of wEz?Ez?aaV?w+ F,(x,y)V?w + F(x, y),2(1 -v2) Qy2(1 -v2) αx: Applying the BCs at the top/bottom surface12Ea2WTX(t-x)=±1/2 = 042(1 - vOx(t,)=±/2 = 0Ea14T42(1 - vayTransvers normal stress in terms of watyet2Eot.ag.YVOzax2(1-v)4ayE12V4w+ F(x,y)↓a2(1 - v49
2 2 2 2 1 2 2 2 , 2(1 ) 2(1 , ) ( ) ( , ) zx zy Ez Ez w F x y F x x y w y • Transvers shear stresses in terms of w • Applying the BCs at the top/bottom surface 2 2 2 2 2 2 2 2 2 2 ( ) 0 2(1 ) 4 ( ) 0 2(1 ) 4 z x zx z t zy z t z y E t z w x E t z w y • Transvers normal stress in terms of w 2 2 4 2 2 3 4 2 3 2(1 ) 4 2(1 ) 4 3 ( , ) y z z x z z E t z w z F x y x y E t z z w Governing Equation in terms of Deflection w(x, y) 9

Governing Equation in terms of Deflection w(x, y): Applying the BCs at the bottom surface(α.)=/2 = 0E=9.2(1-EIO26(1 - vFurther applying the BCs at the top surfaceEt3(o. ) =-1/2 = -q=12(1 - v2)Et3DV4w=q,D12(1 - v2)D:Flexural Rigidity10
t t/2 2 2 3 3 4 2 2 4 2 ( ) 0 1 2(1 ) 4 2 3 8 6(1 ) 2 z z t z z E t t t z z w E t z z t w • Applying the BCs at the bottom surface • Further applying the BCs at the top surface 3 4 2 2 3 4 2 ( ) 12(1 ) , 12(1 ) z z t E t q w q E t D w q D Governing Equation in terms of Deflection w(x, y) • D: Flexural Rigidity 10
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 东南大学:《弹性力学》课程教学课件(英文讲稿)11 Three-Dimensional Problems Dimensional Problems.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)10 Torsion of Prismatic Bars.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)09 Two-Dimensional Problems in Polar Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)08 Two-Dimensional Problems in Cartesian Coordinates.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)07 Two-Dimensional Formulation.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)06 Formulation and Solution Strategies.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)05 Constitutive Relations.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)04 Stress and Equilibrium.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)03 Displacement and Strain.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)02 Mathematical Preliminaries.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)01 Introduction to Elasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)12 Simple Dynamic Solutions for Linear Elastic Solids.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)11 Simple Elastoplastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)10 Simple Hyperelastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)09 Simple Linear Elastic BVPs.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)08 Metal Plasticity.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)07 Viscoelastic Material Models.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)06 Hyper-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)05 Hypo-elastic Materials.pdf
- 东南大学:《固体力学基础》课程教学课件(英文讲稿)04 Linear Elastic Materials.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)13 Thermoelasticity.pdf
- 东南大学:《弹性力学》课程教学课件(英文讲稿)14 Energy Method and Variational Principle.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)桥梁抗震习题答案(789).pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(结构动力学概述).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第6章 桥梁减隔震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第4章 桥梁工程抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第5章 桥梁延性抗震设计.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第3章 桥梁抗震概论.pdf
- 《桥梁抗震》课程教学资源(课件讲稿)动力学(单自由度体系的振动分析).pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第2章 桥梁震害.pdf
- 北京交通大学:《桥梁抗震》课程教学资源(课件讲稿)第1章 地震概述.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第一讲 中国历史建筑发展概况.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第二讲 中国传统建筑基本特征.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第三讲 城市建设史.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第四讲 宫殿建筑.pdf
- 长沙理工大学:《建筑历史概论》课程教学课件(讲稿)第五讲 坛庙建筑.pdf
