北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.2 一般线性变换的 Jordan标准型(1/2)

第二学期第十一次课 第七章§2一般线性变换的 Jordan标准型 定义形如 J2 0 的准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J,称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 证明:对n作数学归纳法 定理设A是数域K上的n阶方阵.如果A的特征值全属于K,则A在K上相似于 Jordan形矩阵,并且在不计 Jordan块顺序的意义下 Jordan形是唯一的 证明:此定理就是上一定理用矩阵的语言叙述出来 Jordan标准形的计算方法 设A是数域K上的n维线性空间V上的线性变换,为求出A的 Jordan标准型(假设存在) 可按如下步骤进行 1)先求A在V的一组基E,E2…,En下的矩阵A 2)求出A的全部不同特征值λ,2…,λ1(假设都属于数域K); 3)对每个A,令B=A-AE,由公式 r(B+)+r(B-)-2r(B) 计算出以A1为特征值,阶为/的 Jordan块个数.从A的 Jordan形J的特征多项式容易看出 以λ为特征值的 Jordan块的阶数之和等于特征值1的重数,由此可知是否已找出全部特征 值为的 Jordan块;或者从r(B)-r(B)等于J中以为特征值而阶≥H+1的 Jordan块 的个数这一点作出判断 4)将所获得的 Jordan块按任意次序排列成准对角形J,即为所求
第二学期第十一次课 第七章 §2 一般线性变换的 Jordan 标准型 定义 形如 = s 2 1 J 0 0 J J J , i i i n n i i i 0 1 1 0 J = 的准对角矩阵称为 Jordan 形矩阵,而主对角线上的小块方阵 i J 称为 Jordan 块. 定理 设 A 是数域 K 上的 n 维线性空间 V 上的线性变换. 如果 A 的特征值全属于 K , 则 A 在 V 的某组基下的矩阵为 Jordan 形,并且在不计 Jordan 块的意义下 Jordan 形是唯一 的. 证明:对 n 作数学归纳法. 定理 设 A 是数域 K 上的 n 阶方阵. 如果 A 的特征值全属于 K ,则 A 在 K 上相似于 Jordan 形矩阵,并且在不计 Jordan 块顺序的意义下 Jordan 形是唯一的. 证明:此定理就是上一定理用矩阵的语言叙述出来. Jordan 标准形的计算方法: 设A是数域 K 上的 n 维线性空间 V 上的线性变换,为求出A的Jordan标准型(假设存在), 可按如下步骤进行: 1) 先求 A 在 V 的一组基 1 2 n , ,, 下的矩阵 A; 2) 求出 A 的全部不同特征值 1,2,,t (假设都属于数域 K); 3) 对每个 i ,令 B= A − iE,由公式 r(B ) r(B ) 2r(B ) l 1 l 1 l + − + − 计算出以 i 为特征值,阶为 l 的 Jordan 块个数.从 A 的 Jordan 形 J 的特征多项式容易看出: 以 i 为特征值的 Jordan 块的阶数之和等于特征值 i 的重数,由此可知是否已找出全部特征 值为 i 的 Jordan 块;或者从 r(B ) r(B ) +1 − l l 等于 J 中以 i 为特征值而阶 l+1 的 Jordan 块 的个数这一点作出判断; 4)将所获得的 Jordan 块按任意次序排列成准对角形 J,即为所求
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.1 幂零线性变换的 Jordan 标准型.doc
- 北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.4)四维时空空间与辛空间.doc
- 北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)酉空间(2/2).doc
- 北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)酉空间(1/2).doc
- 北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)对称变换.doc
- 北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换(续).doc
- 北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换.doc
- 北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.1)欧几里得空间.doc
- 北京大学:《高等代数》课程教学资源(讲义)第五章 5.3 实与复二次型的分类(2/2).doc
- 北京大学:《高等代数》课程教学资源(讲义)第五章 5.3 实与复二次型的分类(1/2).doc
- 北京大学:《高等代数》课程教学资源(讲义)第五章 5.1 双线性函数 5.1.3 线性空间上的对称双线性函数、二次型函数的定义 5.2 二次型 5.2.1 数域上的二次型的定义,二次型 5.2.2 二次型化为标准形的计算方法(配方法).doc
- 北京大学:《高等代数》课程教学资源(讲义)第五章 5.1 双线性函数 5.1.1 线性空间上的线性函数的定义 5.1.2 双线性函数.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.5 商空间上诱导的线性变换 4.5.1 线性变换在(关于不变子空间的)商空间上的诱导变换的定义.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.4 线性变换的特征值与特征向量 4.4.2 关于特征向量与特征子空间的一些性质 4.4.3 线性变换的不变子空间.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.4 线性变换的特征值与特征向量 4.4.1 线性变换的特征值与特征向量的定义.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.3 线性映射与线性变换 4.3.4 线性变换的定义与运算.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.3 线性映射与线性变换 4.3.2 线性映射的运算的定义与性质 4.3.3 线性映射在一组基下的矩阵的定义.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.3 线性映射与线性变换 4.3.1 线性映射的定义.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.7 线性空间关于一个子空间的同余关系 4.2.8 商空间的定义,定义的合理性以及商空间的基的选取.doc
- 北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.4 子空间的直和与直和的四个等价定义 4.2.5 直和因子的基与直和的基 4.2.6 补空间的定义及存在性.doc
- 北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.2 一般线性变换的 Jordan标准型(2/2).doc
- 北京大学:《高等代数》课程教学资源(讲义)第八章 有理整数环 8.1 有理整数环的基本概念.doc
- 北京大学:《高等代数》课程教学资源(讲义)第八章 有理整数环 8.2 同余式.doc
- 北京大学:《高等代数》课程教学资源(讲义)第八章 有理整数环 8.3 模.doc
- 北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.1-9.1.6).doc
- 北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11).doc
- 北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11).doc
- 北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.2 C,R,Q 上多项式的因式分解 9.2.1 复数域、实数域上多项式的因式分解.doc
- 北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.2 C,R,Q 上多项式的因式分解 9.2.2 Q[ ] x 内多项式的因式分解.doc
- 北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.3 实系数多项式根的分布.doc
- 北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.4 单变量有理函数域.doc
- 北京大学:《高等代数》课程教学资源(讲义)第十章 10.2.2 定理、牛顿公式.doc
- 北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.2.3 一元多项式的判别式的定义 12.3 结式 12.3.1 两个一元多项式的结式的定义.doc
- 北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.3.2 用一个多项式的根和另一个多项式计算结式的公式 12.3.3 用一个多项式与它的微商的结式表达该多项式的判别式.doc
- 北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.1 多重线性映射 12.2 线性空间的张量积 12.2.1 域 K 上的二线性空间的张量积的定义(归纳地有多个张量积的定义).doc
- 北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.2.2 线性变换的张量积的定义.doc
- 北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.3 张量 12.3.1 线性变换的张量积的矩阵与线性变换的矩阵的关系.doc
- 北京大学:《高等代数》课程教学资源(讲义)第十二章 张量积与外代数 12.4 外代数.doc
- 北京大学:《高等代数》课程教学资源(讲义)数学科学学院高等代数(I)期末考试题.pdf
- 北京大学:《高等代数》课程教学资源(讲义)数学科学学院高等代数(I)期末考试题.pdf