中国高校课件下载中心 》 教学资源 》 大学文库

《电路》课程教学资源(A)课件(内容+例题,图片版)第3章 电阻电路的一般分析

文档信息
资源类别:文库
文档格式:PPT
文档页数:76
文件大小:15.94MB
团购合买:点击进入团购
内容简介
《电路》课程教学资源(A)课件(内容+例题,图片版)第3章 电阻电路的一般分析
刷新页面文档预览

第3章电阻电路的一般分析 本章目录 3.1 电路的图 3.2 KCL和KVL的独立方程数 3.3 支路电流法 3.4 网孔电流法 3.5 回路电流法 3.6 结点电压法

重点: 用观察法,熟练应用支路电流法,回路电流 法,结点电压法的“方程通式”写出支路电流方 程,回路电流方程,结点电压方程,并求解。 Y难点 1.独立回路的确定; 2.正确理解每一种方法的依据: 3.含独立电流源和受控电流源的电路的回路电 流方程的列写; 4.含独立电压源和受控电压源的电路的结点电 压方程的列写。 2

第3章预习要求 自主学习3-1电路的图,并按以下要求完成任务: 1理解相关的基本概念: 结点、支路、拓扑图、有向图、连通图、平面图、 网孔、回路等; 2理解树、树支、连支的概念; 3理解树与基本回路(单连支回路)的关系; 4理解网孔数与独立回路数的关系

3一1电路的图 ●哥尼斯堡七桥难题 从前有一座城, 城里有一条河, 河上有七座桥, 连接了河中的两个岛。 城中居民经常沿河过桥散步,于是提出了一个问题: 一个人怎样才能一次走遍七座桥,每座桥只走 过一次(不重复),最后回到出发点? 大家都试图找出问题的答案,但谁也解决不了. 这就是哥尼斯堡七桥难题,一个著名的图论问题。 4

岛 岛 岸 瑞士数学家欧拉是这样看待这个难题的: 把二岸和小岛缩成一点,桥化为边,于是“七桥问题”就是 一笔画问题了。结论:找不出一条路线能不重复地走遍七座桥。 因为一个点如果不是起点和终点,那么有一条走向它的线, 就必须有一条离开它的线(不重复)。即联结这些点的线条数目是 偶数(这种点称为偶点)。如果一个点是奇点,那么它只能作为 起点或终点才不会使线条重复。因此能够一笔画出一个图形的条 件,就是它要么没有奇点,要么最多只有两个奇点(分别作为起 点和终点)。而现在所有的点均是奇点,共有四个奇点,因此这 个图形不能“一笔画

结论:一笔画 1.凡是由偶点组成的连通图,一定可以一笔画成: 画时可以把任一偶点为起点,最后一定能以这个点为终 点画完此图。 2凡是只有两个奇点的连通图(其余都为偶点),一 定可以一笔画成: 画时必须把一个奇点为起点,另一个奇点终点。 3.其他情况的图都不能一笔画出。 (奇点数除以二便可算出此图需几笔画成

能否一笔画出? ⑥ 偶点 ② ⑤ ⑧ 8 ③ 3 两个奇点 ③ 2 ④ ④

奥运会的五 环标志能否 一笔画出? 图论是拓扑学(Topology)的一个分支,是富有趣味和应 用极为广泛的一门学科。图论的概念由瑞士数学家欧拉最 早提出(最早的记载是1736年)。1847年,基尔霍夫首先 用图论来分析电网络,如今在电工领域,图论被用于网络 分析与综合、通讯网络与开关网络的设计、集成电路布局 及故障诊断、计算机结构设计及编译技术等等。 8

1.图论的基本概念 支路:将电路中的每一个元件都用一条线段表示,称为一 条拓扑支路,简称为支路: 结点:各支路的连接点用黑点表示,称拓扑结点(简称结点) (1)图G:与原电路对应的用支路与结点组合连接而成的 线图,称为电路的拓扑图,简称为图(Grph),用G表示

有时为了需要,可以把元件的串联组合或元件的并 联组合作为一条支路,则这个电路的图如图(c)所示。 3 4 (a) (b) (c) 构成图G的支路是代表一个电路元件或者一些电路元件 的某种组合的一条抽象的线段,可以画成直线或曲线

刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档