华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Chapter 4 Curve Fitting

Chapter 4. Curve Fitting
Chapter 4. Curve Fitting

Curve Fitting Application of numerical techniques in science and engineering often involve curve fitting of experimental data. In science and engineering it is often the case that an experiment produces a set of data points (x),...(xNN),where the abscissas {x are distinct.If all the numerical values {x),v}are known to several significant digits of accuracy,then polynomial interpolation can be used successfully;otherwise,it cannot. However,many experiments are done with equipment that is reliable only to three or fewer digits of accuracy.Often,there is an experimental error in the measurements. How do we find the best approximation that goes near(not always through)the points?
Curve Fitting ◼ Application of numerical techniques in science and engineering often involve curve fitting of experimental data. ◼ In science and engineering it is often the case that an experiment produces a set of data points (x1 ,y1 ),…,(xN,yN), where the abscissas {xk} are distinct. If all the numerical values {xk}, {yk} are known to several significant digits of accuracy, then polynomial interpolation can be used successfully; otherwise, it cannot. ◼ However, many experiments are done with equipment that is reliable only to three or fewer digits of accuracy. Often, there is an experimental error in the measurements. ◼ How do we find the best approximation that goes near (not always through) the points?

Measures for Errors (Deviations or Residuals) ■Denote efx)yk for 1≤kW ■Maximum error: E.()=mlf()-y.B ■Average error: EUDN24l k1 Root-mean-square error: a=哈2-月
Measures for Errors (Deviations or Residuals) ◼ Denote ek=f(xk )-yk for 1≤k≤N ◼ Maximum error: ◼ Average error: ◼ Root-mean-square error: 1 1 1 1 2 2 2 1 ( ) max{| ( ) |} 1 ( ) | ( ) | 1 ( ) | ( ) | k k k N N k k k N k k k E f f x y E f f x y N E f f x y N = = = − = − = −

Finding the Least-Squares Curve Let {be a set of N points,where the abscissas are distinct.The least-squares curve yfx)is the best one in some function class that minimizes the root-mean-square error E2(f). The simplest formula is the line y-fx)=Ax+B. The quantity E2(f)will be a minimum if and only if the quantity (E((+B-)is a minimum The latter is visualized geometrically by minimizing the sum of the squares of the vertical distances from the points to the line
Finding the Least-Squares Curve ◼ Let {(𝑥𝑘, 𝑦𝑘)}𝑘=1 𝑁 be a set of N points, where the abscissas {xk} are distinct. The least-squares curve y=f(x) is the best one in some function class that minimizes the root-mean-square error E2 (f ). ◼ The simplest formula is the line y=f(x)=Ax+B. ◼ The quantity E2 (f ) will be a minimum if and only if the quantity is a minimum. ◼ The latter is visualized geometrically by minimizing the sum of the squares of the vertical distances from the points to the line. 2 2 2 1 ( ( )) ( ) N k k k N E f Ax B y = = + −

The Least-Squares Line Thm.4.1(Least-Squares Line).Suppose that {(xk,y=1are N points, where the abscissas1are distinct.The coefficients of the least- squares line y=Ax+B are the solution to the following linear system, known as the normal equations: 位4+位-2 位+阳-2 The line y=fx)=Ax+B is the line that minimizes the root-mean-square error E2(f)
The Least-Squares Line ◼ Thm. 4.1(Least-Squares Line). Suppose that {(𝑥𝑘, 𝑦𝑘)}𝑘=1 𝑁 are N points, where the abscissas {xk}𝑘=1 𝑁 are distinct. The coefficients of the leastsquares line y=Ax+B are the solution to the following linear system, known as the normal equations: ◼ The line y=f(x)=Ax+B is the line that minimizes the root-mean-square error E2 (f ). 2 1 1 1 1 1 N N N k k k k k k k N N k k k k x A x B x y x A NB y = = = = = + = + =

Soluting the Normal Equations The normal equations may be an ill-conditioned linear system. The coefficients 4 and B for the least-squares line can be computed as follows.First compute the means and y,and then perform the calculations: C=立4-明,42x-0y-0B=-在 The algorithm aboved is computationally stable.It gives reliable results in cases when the normal equations are ill-conditioned
Soluting the Normal Equations ◼ The normal equations may be an ill-conditioned linear system. ◼ The coefficients A and B for the least-squares line can be computed as follows. First compute the means 𝑥ҧand 𝑦ത, and then perform the calculations: ◼ The algorithm aboved is computationally stable. It gives reliable results in cases when the normal equations are ill- conditioned. 2 1 1 1 ( ) , ( )( ), N N k k k k k C x x A x x y y B y Ax = = C = − = − − = −

Power Fit y=4xM ■ Some situations involve y=AxM,where Mis a known constant. In these cases there is only one parameter 4 to be determined. Thm.4.2 (Power Fit).Suppose that {(xk,y)=1 are N points, where the abscissas are distinct.The coefficient 4 of the least- squares power curve y=4xM is given by the following normal equation: 4区/会
Power Fit y=AxM ◼ Some situations involve y=AxM , where M is a known constant. In these cases there is only one parameter A to be determined. ◼ Thm. 4.2 (Power Fit). Suppose that {(𝑥𝑘, 𝑦𝑘)}𝑘=1 𝑁 are N points, where the abscissas are distinct. The coefficient A of the leastsquares power curve y=AxM is given by the following normal equation: 2 1 1 . N N M M k k k k k A x y x = = =

Methods of Curve Fitting ■ Suppose that we are given the points (),(x2),...,(x)and want to fit an exponential curve of the form y=Ce x The coefficients 4 and C should be determined. The nonlinear least-squares procedure requires that we find a minimum of E(A,C)=N=(CeAxk-yk)2.We set the partial derivatives of E(4,C)to zero and then simplified,the resulting normal equations are ce2-立e=0 -∑ye=0 k=1
Methods of Curve Fitting ◼ Suppose that we are given the points (x1 ,y1 ),(x2 ,y2 ),…,(xN,yN) and want to fit an exponential curve of the form y=CeAx . ◼ The coefficients A and C should be determined. ◼ The nonlinear least-squares procedure requires that we find a minimum of 𝐸 𝐴, 𝐶 = σ𝑘=1 𝑁 (𝐶𝑒 𝐴𝑥𝑘 − 𝑦𝑘) 2 . We set the partial derivatives of E(A, C) to zero and then simplified, the resulting normal equations are 2 1 1 2 1 1 0 0 k k k k N N Ax Ax k k k k k N N Ax Ax k k k C x e x y e C e y e = = = = − = − =

Data Linearization Method for y=Ce4x Take the logarithm of both sides:In(y)=Ax+In(C) Introduce the change of variables:Y=In(y),X=x,and B=In(C). A linear relation between the new variables X and Y:Y=4X+B The original points (in the xy-plane are transformed into the points (Y)(xkIn())in the XY-plane.This process is called data linearization.Then the least-squares line is fit to the points {(X Y) The normal equations for finding 4 and B are 2位xj-宫x 立x4+N8-24
Data Linearization Method for y=CeAx : ◼ Take the logarithm of both sides: ln(y)=Ax+ln(C). ◼ Introduce the change of variables: Y=ln(y), X=x, and B=ln(C). ◼ A linear relation between the new variables X and Y: Y=AX+B. The original points (xk ,yk ) in the xy-plane are transformed into the points (Xk ,Yk )=(xk ,ln(yk )) in the XY-plane. This process is called data linearization. Then the least-squares line is fit to the points {(Xk , Yk )}. The normal equations for finding A and B are 2 1 1 1 1 1 N N N k k k k k k k N N k k k k X A X B X Y X A NB Y = = = = = + = + =

Transformations for Data Linearization The technique of data linearization has been used to fit curves. Once the curve has been chosen,a suitable transformation of the variables must be found so that a linear relation is obtained. Function,y=f(x) Linearized form,Y=4X+B Change of variable(s)and constants A y=x+B y=A+B X=,Y=y 0 X=xy,Y=y y= y=名)+ -1 x+C C= B =A 1 y= X=x,Y= Ax+B =Ax+B y y x 1 1 1 (c)y=Ax+B =A+B y X=Y=j
Transformations for Data Linearization ◼ The technique of data linearization has been used to fit curves. ◼ Once the curve has been chosen, a suitable transformation of the variables must be found so that a linear relation is obtained. Function, y = f (x) Linearized form, Y=AX+B Change of variable(s) and constants 𝑦 = 𝐴 𝑥 + 𝐵 𝑦 = 𝐴 1 𝑥 +B 𝑋 = 1 𝑥 , 𝑌 = 𝑦 𝑦 = 𝐷 𝑥 + 𝐶 𝑦 = −1 𝐶 𝑥𝑦 + 𝐷 𝐶 X = xy, Y = y 𝐶 = −1 𝐴 ,𝐷 = −𝐵 𝐴 𝑦 = 1 𝐴𝑥 + 𝐵 1 𝑦 = 𝐴𝑥 + 𝐵 𝑋 = 𝑥, 𝑌 = 1 𝑦 𝑦 = 𝑥 𝐴𝑥 + 𝐵 1 𝑦 = 𝐴 1 𝑥 + 𝐵 𝑋 = 1 𝑥 , 𝑌 = 1 𝑦 (c)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Chapter 3 Interpolation and Polynomial Approximation.pptx
- 华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Chapter 2 Solution of Linear Systems AX=B.pptx
- 华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Chapter 1 Solution of Nonlinear Equations f(x)=0(主讲:谢骊玲).pptx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验16 常微分方程初值问题的数值解法 习题.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(讲义)实验16 常微分方程初值问题的数值解.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验16 常微分方程初值问题的数值解法 参考答案.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验15 特征值与特征向量 参考答案.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验15 特征值与特征向量 习题.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(讲义)实验15 特征值与特征向量.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验14 数值最优化方法 参考答案.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(讲义)实验14 数值最优化方法.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验14 数值最优化方法 习题.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(讲义)实验13 数值微分和数值积分.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验13 数值微分和数值积分 习题.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验13 数值微分和数值积分 参考答案.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验12 贝塞尔曲线和B样条曲线 参考答案.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(讲义)实验12 贝塞尔曲线和B样条曲线.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验12 贝塞尔曲线和B样条曲线 习题.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(讲义)实验11 最小二乘曲线拟合.docx
- 华南师范大学:《MATLAB数值分析实验》课程教学资源(作业习题)实验11 最小二乘曲线拟合 习题.docx
- 华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Chapter 5 Numerical Integration.pptx
- 华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Chapter 6 Solution of Differential Equations.ppt
- 华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Introduction to Numerical Methods.pptx
- 华南师范大学:《数值计算方法》课程PPT教学课件(数值分析 Numerical Analysis)Numerical Differentiation.pptx
- 广东财经大学:统计与数学学院《高等数学选讲I》课程教学大纲.docx
- 广东财经大学:统计与数学学院《应用回归分析》课程教学大纲.doc
- 广东财经大学:统计与数学学院《统计预测与决策》课程教学大纲.doc
- 广东财经大学:统计与数学学院《偏微分方程》课程教学大纲.docx
- 广东财经大学:统计与数学学院《程序设计基础(C语言)》课程教学大纲.doc
- 广东财经大学:统计与数学学院《MATLAB》课程教学大纲.doc
- 广东财经大学:统计与数学学院《MATLAB》课程教学大纲.doc
- 广东财经大学:统计与数学学院《常微分方程》课程教学大纲.doc
- 广东财经大学:统计与数学学院《R程序设计语言》实验课程教学大纲.doc
- 广东财经大学:统计与数学学院《R程序设计语言》课程教学大纲.doc
- 广东财经大学:统计与数学学院《高等数学I》课程教学大纲.doc
- 广东财经大学:统计与数学学院《高等数学概论课程》课程教学大纲.doc
- 广东财经大学:统计与数学学院《高等代数I》课程教学大纲.doc
- 广东财经大学:统计与数学学院《数学分析(I)》课程教学大纲.doc
- 广东财经大学:统计与数学学院《数学分析Ia》课程教学大纲.doc
- 广东财经大学:统计与数学学院《非参数统计》课程教学大纲.doc