电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 11 缩放噪声 Scaling and Roundoff Noise

电子种越女学 University of Electroe Scioncad TechofChina 986 Chapter 11 Scaling and Roundoff Noise Xiang LING National Key Lab of Science and Technology on Communications
Chapter 11 Scaling and Roundoff Noise Xiang LING National Key Lab of Science and Technology on Communications

11.1 Introduction 96 In a fixed-point digital filter implementation,the overall input-output behavior is non-ideal due to quantization of signals and coefficients. There are two basic types of quantization effects in any implementation. Coefficient quantization Signal rounding Limit-cycle oscillation ■Roundoff noise 2021年2月 2
2021年2月 2 11.1 Introduction In a fixed-point digital filter implementation, the overall input-output behavior is non-ideal due to quantization of signals and coefficients. There are two basic types of quantization effects in any implementation. Coefficient quantization Signal rounding Limit-cycle oscillation Roundoff noise

11.2.1 Scaling Operation /96 Scaling: -A process of readjusting certain internal gain parameters in order to constrain internal signals to a range appropriate to the hardware with the constraint that the transfer function from input to output should not be changed. D(Z) H()=D()+F()G() IN OUT F(Z) G(Z) (a) D(Z) OUT F(Z)/B x' BG(Z (b) 2021年2月 3
2021年2月 3 11.2.1 Scaling Operation Scaling: A process of readjusting certain internal gain parameters in order to constrain internal signals to a range appropriate to the hardware with the constraint that the transfer function from input to output should not be changed. H(z) D(z) F(z)G(z)

/966 The scaling parameter B can be chosen to meet any specific scaling rule such as h-scaling:B=∑of(l (11.2) 12-scaling:B=δV∑f2(l (11.3) where f(i)is the unit-sample response from input to the node x, ■ And the parameter 6 can be interpreted to represent the value of standard deviations representable in the register at node x if input is unit-variance white noise. 2021年2月 4
2021年2月 4 The scaling parameter β can be chosen to meet any specific scaling rule such as where f(i) is the unit-sample response from input to the node x, And the parameter δ can be interpreted to represent the value of standard deviations representable in the register at node x if input is unit-variance white noise

/96 ■If the input is bounded by |u(n)l≤l,then ron=|∑f0un-sofo间 (11.4) ■ Equation (11.4)represents the true bound on the range of x and overflow is completely avoided by /scaling in (11.2),which is the most stringent scaling policy. 2021年2月 5
2021年2月 5 If the input is bounded by |u(n)| ≤1, then Equation (11.4) represents the true bound on the range of x and overflow is completely avoided by l1 scaling in (11.2), which is the most stringent scaling policy

96 Input can be generally assumed to be white noise.For unit-variance white noise input,variance at node x is given by: -∑f0 (11.5) /scaling is commonly used because most input signals can be assumed to be white noise. (11.5)is a variance (not a strict bound),there is a possibility of overflow. We can increase 6 in (11.3)to prevent possible overflow. But increasing o will decrease SNR (signal-to-noise ratio). Thus,there is a trade-off between overflow and round-off noise. 2021年2月 6
2021年2月 6 Input can be generally assumed to be white noise. For unit-variance white noise input, variance at node x is given by: l2 scaling is commonly used because most input signals can be assumed to be white noise. (11.5) is a variance (not a strict bound), there is a possibility of overflow. We can increase δ in (11.3) to prevent possible overflow. But increasing δ will decrease SNR (signal-to-noise ratio). Thus, there is a trade-off between overflow and round-off noise

11,2.2 Round-off Noise /986 Product of two Wbit fixed-point fractions is a (2 W1)bit number.This product must eventually be quantized to Wbits by rounding or truncation, which results in round-off noise. 2021年2月 7
2021年2月 7 11.2.2 Round-off Noise Product of two W-bit fixed-point fractions is a (2W-1) bit number. This product must eventually be quantized to W-bits by rounding or truncation, which results in round-off noise

966 Example: Consider the 1st-order IIR filter. Assume that the input wordlength W=8 bits,and the multiplier coefficient wordlength is also 8 bits. To maintain full precision in the output,we need to increase the output wordlength by 8 bits per iteration. This is clearly infeasible. Thus,the result needs to be rounded or a 15-bits 8-bits truncated to its nearest 8-bit representation. This introduces a round-u(n) D x(n) off noise e(n). 8-bits 2021年2月 8
2021年2月 8 Example: Consider the 1st-order IIR filter. Assume that the input wordlength W=8 bits, and the multiplier coefficient wordlength is also 8 bits. To maintain full precision in the output, we need to increase the output wordlength by 8 bits per iteration. This is clearly infeasible. Thus, the result needs to be rounded or truncated to its nearest 8-bit representation. This introduces a roundoff noise e(n)

/96 Round-off Noise Mathematical Model:usually modeled as an infinite precision system with an external error input. Rounding is a nonlinear operation.But its effect at the output can be analyzed using linear system theory with the following assumptions about e(n): e(n)is uniformly distributed white noise; e(n)is a wide-sense stationary random process,i.e.,mean and co-variance are independent of time index n; x(n) e(n)is uncorrelated to all other signals such as input and other noise signals. e(n):round-off error 2021年2月 9
2021年2月 9 Round-off Noise Mathematical Model: usually modeled as an infinite precision system with an external error input. Rounding is a nonlinear operation. But its effect at the output can be analyzed using linear system theory with the following assumptions about e(n): e(n) is uniformly distributed white noise; e(n) is a wide-sense stationary random process, i.e., mean and co-variance are independent of time index n; e(n) is uncorrelated to all other signals such as input and other noise signals

/966 Let the wordlength of the output be W-bits,then the round-off error e(n)can be given by 2W-2 sgn 2-(m-1) 2-(m-1) W-1 W-1 se(n) (11.6) 2 2 2 22m1 2-(m-1) The error is assumed to be uniformly distributed over the interval in (11.6),the corresponding probability distribution is shown below,where A is the length of the interval,i.e.,A=2-(W-1) Pe() 片 2021年2月 10
2021年2月 10 Let the wordlength of the output be W-bits, then the round-off error e(n) can be given by The error is assumed to be uniformly distributed over the interval in (11.6), the corresponding probability distribution is shown below, where Δ is the length of the interval, i.e., Δ=2-(W-1) sgn 2W-2 W-1 W-1
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 09 算法强度缩减 Algorithmic strength reduction in filters and transforms.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 08 快速卷积 Fast Convolution.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 10 递归滤波器 Pipelined and Parallel Recursive and Adaptive Filters.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 07 脉动阵列 Systolic Architecture.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 06 折叠 Folding.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 05 展开 Unfolding.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 04 重定时 Retiming.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 03 流水与并行 Pipelining and Parallel Processing.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 02 迭代界 Iteration Bound.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 01 导论 Introduction to Digital Signal Processing Systems.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 00 简介 Introduction to VLSI(凌翔).pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(教学大纲,凌翔).pdf
- 电子科技大学:《电子无源元件工艺实验》课程实验课件讲稿 Electronic Passive Components Process Experiment Course(主讲:戴丽萍).pdf
- 电子科技大学:《半导体封装测试与可靠性 Packaging,Testing and Reliability of Semiconductor》课程教学资源(课件讲稿,思政版).pdf
- 电子科技大学:《半导体封装测试与可靠性 Packaging,Testing and Reliability of Semiconductor》课程教学资源(教学大纲,思政版).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design》课程教学资源(课件讲稿)Topic 4 VLSI for DSP.pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design》课程教学资源(课件讲稿)Topic 3 Verification and Test.pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design》课程教学资源(课件讲稿)Topic 2.2 FPGA Design with Verilog(Supplementary).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design》课程教学资源(课件讲稿)Topic 2.1 FPGA Design with Verilog(FPGA Design Method、Design Examples).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design》课程教学资源(课件讲稿)Topic 1.3 Introduction-Our Course.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 13 位级运算 Bit-Level Arithmetic Architectures.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 14 冗余运算 Redundant Arithmetic.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 15 数字强度缩减 Numerical Strength Reduction.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第1章 概述——研究意义(王忆文).pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第1章 概述——测试的基本知识.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第2章 电路测试基础.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第3章 验证、模拟和仿真.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第4章 自动测试生成.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第10章 电流测试.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第11章 存储器测试.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第12章 Soc测试(1/2).pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第5章 专用可测性设计.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第6章 扫描设计.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第7章 边界扫描.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第8、9章 内建自测试.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第12章 Soc测试(2/2)IEEE P1500 嵌入式核可测性标准.pdf
- 《现代编码理论与技术》课程教学资源(学习资料)Turbo码启示录——从默默无闻到广泛应用.doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(讲义)第三章 线性分码组.doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(讲义)第五章 循环码(陆以勤).doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(讲义)第四章 多项式环与有限域.doc