电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 15 数字强度缩减 Numerical Strength Reduction

电子种越女学 University of Electroe Scioncad TechofChina 986 Chapter 15 Numerical Strength Reduction Xiang LING National Key Lab of Science and Technology on Communications
Chapter 15 Numerical Strength Reduction Xiang LING National Key Lab of Science and Technology on Communications

Introduction /96 ■ Numerical strength reduction is a transformation techniques for reducing strength of DSP computations. This transformation relays on sub expression elimination (also referred to as substructure sharing). 2021年2月 通信抗干扰技术国家重点实验室 2
2021年2月 通信抗干扰技术国家重点实验室 2 Introduction Numerical strength reduction is a transformation techniques for reducing strength of DSP computations. This transformation relays on sub expression elimination (also referred to as substructure sharing)

Sub-expression elimination 96 Sub-expression elimination is a numerical transformation of the constant multiplications that can lead to efficient hardware in terms of area,power and speed. Sub-expression can only be performed on constant multiplications that operate on a common variable. It is essentially the process of examining the shift and add implementations of the constant multiplications and finding redundant operations. Example:a x and b x,where a=001101 and b=011011 can be performed as follows: ■ a*×=000100*×+001001*× ■ b*×=010010*×+001001*×=(001001*x)<<1+(001001*×) The term 001001 x needs to be computed only once. So,multiplications were implemented using 3 shifts and 3 adds as opposed to 5 shifts and 5 adds. 2021年2月 通信抗干扰技术国家重点实验室 3
2021年2月 通信抗干扰技术国家重点实验室 3 Sub-expression elimination Sub-expression elimination is a numerical transformation of the constant multiplications that can lead to efficient hardware in terms of area, power and speed. Sub-expression can only be performed on constant multiplications that operate on a common variable. It is essentially the process of examining the shift and add implementations of the constant multiplications and finding redundant operations. Example: a * x and b * x, where a = 001101 and b = 011011 can be performed as follows: a * x = 000100 * x + 001001 * x b * x = 010010 * x + 001001 * x = (001001 * x) << 1 +(001001 * x). The term 001001 * x needs to be computed only once. So, multiplications were implemented using 3 shifts and 3 adds as opposed to 5 shifts and 5 adds

Multiple Constant Multiplication The algorithm for MCM uses an iterative matching process that consists of the following steps: 1. Express each constant in the set using a binary format (such as signed,unsigned,2's complement representation). 2. Determine the number of bit-wise matches(nonzero bits)between all of the constants in the set. 3.Choose the best match. 4. Eliminate the redundancy from the best match.Return the remainders and the redundancy to the set of coefficients. 5.Repeat Steps 2-4 until no improvement is achieved. 2021年2月 通信抗干扰技术国家重点实验室 4
2021年2月 通信抗干扰技术国家重点实验室 4 Multiple Constant Multiplication The algorithm for MCM uses an iterative matching process that consists of the following steps: 1. Express each constant in the set using a binary format (such as signed, unsigned, 2’s complement representation). 2. Determine the number of bit-wise matches (nonzero bits) between all of the constants in the set. 3. Choose the best match. 4. Eliminate the redundancy from the best match. Return the remainders and the redundancy to the set of coefficients. 5. Repeat Steps 2-4 until no improvement is achieved

Multiple Constant /96 Multiplication Example: Constant Value Unsigned a 237 11101101 b 182 10110110 93 01011101 Binary representation of constants Constant Unsigned Constant Unsigned Rem.of a 10100000 Rem.of a 00000000 b 10110110 Rem.of b 00010110 Rem.of c 00010000 Rem.of c 00010000 Red.of a,c 01001101 Red.of a,c 01001101 Red.of Rem a,b 10100000 Updated set of constants 1st iteration Updated set of constants 2nd iteration 2021年2月 通信抗干扰技术国家重点实验室 5
2021年2月 通信抗干扰技术国家重点实验室 5 Multiple Constant Multiplication

Linear Transformations 96 A general form of linear transformation is given as: y =T*x where,T is an m by n matrix,y is length-m vector and x is a length-n vector.It can also be written as: Y=2mi=0tǒi=0n o The following steps are followed: Minimize the number of shifts and adds required to compute the products t by using the iterative matching algorithm. Formation of unique products using the sub-expression found in the 1st step. Final step involves the sharing of additions,which is common among the yi's.This step is very similar to the MCM problem. 2021年2月 通信抗干扰技术国家重点实验室 6
2021年2月 通信抗干扰技术国家重点实验室 6 Linear Transformations A general form of linear transformation is given as: y =T*x where, T is an m by n matrix, y is length-m vector and x is a length-n vector. It can also be written as: Yi=Σ n j=0 tijxj i=0,…, n The following steps are followed: Minimize the number of shifts and adds required to compute the products tijxj by using the iterative matching algorithm. Formation of unique products using the sub-expression found in the 1st step. Final step involves the sharing of additions, which is common among the yi’s. This step is very similar to the MCM problem

96 Linear Transformations Example 「7 82 13 12 11713 T= 5 8215 7 117 11 Column 1 Column 2 Column 3 Column 4 0101 1000 0010 1001 0010 1011 0111 0100 1100 0010 通信抗干扰技术国家重点 2021年2月 实验室 7
2021年2月 通信抗干扰技术国家重点 实验室 7 Linear Transformations Example

Linear Transformations 96 Next,the unique products are formed as shown below: p1=0101*x1,p2=0010*x1,p3=1100*x1 p4=1000*x2,p5=1011*x2,p6=0010*x3, p7=0111*x3p8=1001*x4,p9=0100*x4, p10=0010*x4 Using these products the yi's are as follows: y1=p1+p2+p4+p6+p8+p9; y2=p3+p5+p7+p8+p9; y3=p1+p4+p6+p8+p9+p10; y4=p1+p2+p5+p7+p8+p10; 2021年2月 通信抗干扰技术国家重点实验室 8
2021年2月 通信抗干扰技术国家重点实验室 8 Linear Transformations Next, the unique products are formed as shown below: p1 = 0101*x1, p2 = 0010*x1, p3 = 1100*x1 p4 = 1000*x2, p5 = 1011*x2, p6 = 0010*x3, p7 = 0111*x3 p8 = 1001*x4, p9 = 0100*x4, p10=0010*x4 Using these products the yi’s are as follows: y1 = p1 + p2 + p4 + p6 + p8 + p9; y2 = p3 + p5 + p7 + p8 + p9; y3 = p1 + p4 + p6 + p8 + p9 + p10; y4 = p1 + p2 + p5 + p7 + p8 + p10;

Linear Transformations /986 Applying iterative matching algorithm to reduce the number of additions required for yi's we get: y1=p2+(p1+p4+p6+p8+p9): y2=p3+p9+(p5+p7+p8)i y3=p10+(p1+p4+p6+p8+p9): y4=p1+p2+p10+(p5+p7+p8)i The total number of additions are reduced from 35to20. 2021年2月 通信抗干扰技术国家重点实验室 9
2021年2月 通信抗干扰技术国家重点实验室 9 Linear Transformations Applying iterative matching algorithm to reduce the number of additions required for yi’s we get: y1 = p2 + (p1 + p4 + p6 + p8 + p9); y2 = p3 + p9 + (p5 + p7 + p8); y3 = p10 + (p1 + p4 + p6 + p8 + p9); y4 = p1 + p2 + p10 + (p5 + p7 + p8); The total number of additions are reduced from 35 to 20

Polynomial Evaluation /96 Evaluating the polynomial: x13+x7+x4+x2+X Without considering the redundancies this polynomial evaluation requires 22 multiplications. Examining the exponents and considering their binary representations: 1=0001,2=0010,4=0100,7=0111,13=1101. x7 can be considered as x4 X x2 Xx.Applying sub-expression sharing to the exponents the polynomial can be evaluated as follows: x8×(x4×x)+x2×(x4×X)+x4+X2+X The terms x2,x4 and x8 each require one multiplication as shown below: X2=X×X,X4=X2×X2,8=x4×X4 Thus,we require 6 instead of 22 multiplications. 2021年2月 通信抗干扰技术国家重点实验室 10
2021年2月 通信抗干扰技术国家重点实验室 10 Polynomial Evaluation Evaluating the polynomial: x 13 + x7 + x4 + x2 + x Without considering the redundancies this polynomial evaluation requires 22 multiplications. Examining the exponents and considering their binary representations: 1 = 0001, 2 = 0010, 4 = 0100, 7 = 0111, 13 = 1101. x7 can be considered as x4 × x 2 × x. Applying sub-expression sharing to the exponents the polynomial can be evaluated as follows: x 8 × (x4 × x) + x2 × (x4 × x) + x4 + x2 + x The terms x2, x4 and x8 each require one multiplication as shown below: x 2 = x × x, x4 = x2 × x 2 , x8 = x4 × x 4 Thus, we require 6 instead of 22 multiplications
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 14 冗余运算 Redundant Arithmetic.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 13 位级运算 Bit-Level Arithmetic Architectures.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 11 缩放噪声 Scaling and Roundoff Noise.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 09 算法强度缩减 Algorithmic strength reduction in filters and transforms.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 08 快速卷积 Fast Convolution.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 10 递归滤波器 Pipelined and Parallel Recursive and Adaptive Filters.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 07 脉动阵列 Systolic Architecture.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 06 折叠 Folding.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 05 展开 Unfolding.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 04 重定时 Retiming.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 03 流水与并行 Pipelining and Parallel Processing.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 02 迭代界 Iteration Bound.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 01 导论 Introduction to Digital Signal Processing Systems.pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(课件讲稿)Chapter 00 简介 Introduction to VLSI(凌翔).pdf
- 电子科技大学:《DSP算法实现技术与架构 VLSI Digital Signal Processing Systems Design and Implementation》课程教学资源(教学大纲,凌翔).pdf
- 电子科技大学:《电子无源元件工艺实验》课程实验课件讲稿 Electronic Passive Components Process Experiment Course(主讲:戴丽萍).pdf
- 电子科技大学:《半导体封装测试与可靠性 Packaging,Testing and Reliability of Semiconductor》课程教学资源(课件讲稿,思政版).pdf
- 电子科技大学:《半导体封装测试与可靠性 Packaging,Testing and Reliability of Semiconductor》课程教学资源(教学大纲,思政版).pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design》课程教学资源(课件讲稿)Topic 4 VLSI for DSP.pdf
- 电子科技大学:《ASIC设计 Application Specific Integrated Circuit Design》课程教学资源(课件讲稿)Topic 3 Verification and Test.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第1章 概述——研究意义(王忆文).pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第1章 概述——测试的基本知识.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第2章 电路测试基础.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第3章 验证、模拟和仿真.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第4章 自动测试生成.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第10章 电流测试.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第11章 存储器测试.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第12章 Soc测试(1/2).pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第5章 专用可测性设计.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第6章 扫描设计.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第7章 边界扫描.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第8、9章 内建自测试.pdf
- 电子科技大学:《集成电路可测性设计 VLSIDesign》课程教学资源(课件讲稿)第12章 Soc测试(2/2)IEEE P1500 嵌入式核可测性标准.pdf
- 《现代编码理论与技术》课程教学资源(学习资料)Turbo码启示录——从默默无闻到广泛应用.doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(讲义)第三章 线性分码组.doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(讲义)第五章 循环码(陆以勤).doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(讲义)第四章 多项式环与有限域.doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(讲义)第六章 循环码的译码.doc
- 华南理工大学:《现代编码理论与技术》课程教学资源(PPT课件讲稿)第一章 纠错码的基本概念.ppt
- 华南理工大学:《现代编码理论与技术》课程教学资源(PPT课件讲稿)第二章 代数初步(陆以勤).ppt