《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots

Testing for Unit roots 2 Consider an AR(1): y,=a+pvi-+er o Let Ho: p=1, (assume there is a unit root) ◆ Define 6=p I and subtract V/ rom both sides to obtain Ay,=a+ O-1+e, A Unfortunately, a simple: ot ls inappropriate, since this is an I(1)process 2 A Dickey-Fuller Test uses the t-statistic, but different critical values Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Testing for Unit Roots Consider an AR(1): yt = a + ryt-1 + et Let H0 : r = 1, (assume there is a unit root) Define q = r – 1 and subtract yt-1 from both sides to obtain Dyt = a + qyt-1 + et Unfortunately, a simple t-test is inappropriate, since this is an I(1) process A Dickey-Fuller Test uses the t-statistic, but different critical values

Testing for Unit roots(cont) ◆ We can add p lags of△y, to allow for more dynamics In the process Still want to calculate the t-statistic for 0 e Now it's called an augmented Dickey Fuller test. but still the same critical values The lags are intended to clear up any serial correlation, if too few, test won't be right Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 Testing for Unit Roots (cont) We can add p lags of Dyt to allow for more dynamics in the process Still want to calculate the t-statistic for q Now it’s called an augmented DickeyFuller test, but still the same critical values The lags are intended to clear up any serial correlation, if too few, test won’t be right

Testing for Unit roots w/Trends o If a series is clearly trending, then we need to adjust for that or might mistake a trend stationary series for one with a unit root Can just add a trend to the model e Still looking at the t-statistic for 0, but the critical values for the Dickey-Fuller test change Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 Testing for Unit Roots w/ Trends If a series is clearly trending, then we need to adjust for that or might mistake a trend stationary series for one with a unit root Can just add a trend to the model Still looking at the t-statistic for q, but the critical values for the Dickey-Fuller test change

Spurious regression e Consider running a simple regression of y on x, where y and x, are independent I(1) series The usual ols t-statistic will often be statistically significant, indicating a relationship where there is none o Called the spurious regression problem Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 Spurious Regression Consider running a simple regression of yt on xt where yt and xt are independent I(1) series The usual OLS t-statistic will often be statistically significant, indicating a relationship where there is none Called the spurious regression problem

Cointegration o Say for two I(1)processes, y, and x, there is a Such that y,Bx, is an I(0)process o If so, we say that y and x are cointegrated and ca ll B the cointegration parameter o If we know B, testing for cointegration is straightforward if we define st=y,-Bxr o Do Dickey-Fuller test and if we reject a unit root, then they are cointegrated Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 Cointegration Say for two I(1) processes, yt and xt , there is a b such that yt – bxt is an I(0) process If so, we say that y and x are cointegrated, and call b the cointegration parameter If we know b, testing for cointegration is straightforward if we define st = yt – bxt Do Dickey-Fuller test and if we reject a unit root, then they are cointegrated

Cointegration(continued) o If B is unknown, then we first have to estimate B, which adds a complication e After estimating B we run a regression of Au, on u,, and compare t-statistic ow/ with the special critical values o If there are trends. need to add it to the initial regression that estimates B and use different critical values for t-statistic oni./ Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 Cointegration (continued) If b is unknown, then we first have to estimate b , which adds a complication After estimating b we run a regression of Dût on ût-1 and compare t-statistic on ût-1 with the special critical values If there are trends, need to add it to the initial regression that estimates b and use different critical values for t-statistic on ût-1

Forecasting Once we've run a time-series regression we can use it for forecasting into the future o Can calculate a point forecast and forecast interval in the same way we got a prediction and prediction interval with a croSs-section o Rather than use in-sample criteria like adjusted R2, often want to use out-of-sample criteria to judge how good the forecast is Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 Forecasting Once we’ve run a time-series regression we can use it for forecasting into the future Can calculate a point forecast and forecast interval in the same way we got a prediction and prediction interval with a cross-section Rather than use in-sample criteria like adjusted R2 , often want to use out-of-sample criteria to judge how good the forecast is

Out-of-Sample criteria Idea is to note use all of the data in estimating the equation, but to save some for evaluating how well the model forecasts Let total number of observations be n +m and use n of them for estimating the model o Use the model to predict the next m observations. and calculate the difference between your prediction and the truth Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 Out-of-Sample Criteria Idea is to note use all of the data in estimating the equation, but to save some for evaluating how well the model forecasts Let total number of observations be n + m and use n of them for estimating the model Use the model to predict the next m observations, and calculate the difference between your prediction and the truth

Out-of-Sample Criteria(cont) Call this difference the forecast error which is en++ for h=0, 1,...,m Calculate the root mean square error (RMSE Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 Out-of-Sample Criteria (cont) Call this difference the forecast error, which is ên+h+1 for h = 0, 1, …, m Calculate the root mean square error (RMSE)

Out-of-Sample Criteria(cont) Call this difference the forecast error which is en+h+, for h=0, 1,...,m o Calculate the root mean square error and see which model has the smallest. where RMSE= m > e2 n+h+1 h=0 Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 Out-of-Sample Criteria (cont) Call this difference the forecast error, which is ên+h+1 for h = 0, 1, …, m Calculate the root mean square error and see which model has the smallest, where 1 2 1 0 2 1 1 ˆ = − = + + − m h n h RMSE m e
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt
- 清华大学:《微观计量经济学》第九章(9-4) 离散被解释变量模型的扩展.ppt
- 清华大学:《微观计量经济学》第十章(10-1) 受限数据模型.ppt
- 清华大学:《微观计量经济学》第十章(10-2) 持续时间数据模型.ppt
- 清华大学:《微观计量经济学》复习提纲.doc
- 《经济学》课程教学资源(讲义)课程国际分工的理论依据.doc
- 武汉理工大学:《世界经济概论》第十四章 国际货币体系.ppt
- 武汉理工大学:《世界经济概论》课程简述.ppt
- 武汉理工大学:《世界经济概论》世界宏观经济学.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第八章 灰色系统预测.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第二章 定性预测方法.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第九章 决策概述.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第六章 趋势曲线预测模型.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第七章 马尔可夫预测法.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第三章 回归预测方法.ppt