《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis

Multiple regression analysis y=Bo B Bx+ Bx +.Bkk+u ◆5. dummy variables Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Multiple Regression Analysis y = b0 + b1 x1 + b2 x2 + . . . bk xk + u 5. Dummy Variables

Dummy variables o a dummy variable is a variable that takes on the value 1 or o o Examples: male= 1 if are male, 0 otherwise), south(=l if in the south, 0 otherwise), etc o Dummy variables are also called binary variables for obvious reasons Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 Dummy Variables A dummy variable is a variable that takes on the value 1 or 0 Examples: male (= 1 if are male, 0 otherwise), south (= 1 if in the south, 0 otherwise), etc. Dummy variables are also called binary variables, for obvious reasons

A Dummy Independent variable e Consider a simple model with one continuous variable(x) and one dummy (d) ◆y=B+ad+B1x+ o This can be interpreted as an intercept shift o If d=0, then y=Bo+ Bx+u o If d=1, then y=(Bo+8)+Bx+u 2 The case of d=0 is the base group Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 A Dummy Independent Variable Consider a simple model with one continuous variable (x) and one dummy (d) y = b0 + d0d + b1 x + u This can be interpreted as an intercept shift If d = 0, then y = b0 + b1 x + u If d = 1, then y = (b0 + d0 ) + b1 x + u The case of d = 0 is the base group

Example of so>0 y=(B+)+B1 slope= B d=0 B y= Bo t Bix X Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 Example of d0 > 0 x y d0{ }b0 y = (b0 + d0 ) + b1 x y = b0 + b1 x slope = b1 d = 0 d = 1

Dummies for Multiple Categories o We can use dummy variables to control for something with multiple categories e Suppose everyone in your data is either a Hs dropout, Hs grad only, or college grad To compare hS and college grads to Hs dropouts, include 2 dummy variables o hsgrad=1 if HS grad only o otherwise. and colgrad- 1 if college grac d, O otherw Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 Dummies for Multiple Categories We can use dummy variables to control for something with multiple categories Suppose everyone in your data is either a HS dropout, HS grad only, or college grad To compare HS and college grads to HS dropouts, include 2 dummy variables hsgrad = 1 if HS grad only, 0 otherwise; and colgrad = 1 if college grad, 0 otherwise

Multiple Categories(cont) Any categorical variable can be turned into a set of dummy variables o Because the base group is represented b the intercept, if there are n categories there should be n-l dummy variables o If there are a lot of categories, it may make sense to group some together e Example: top 10 ranking, 11-25, etc Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 Multiple Categories (cont) Any categorical variable can be turned into a set of dummy variables Because the base group is represented by the intercept, if there are n categories there should be n – 1 dummy variables If there are a lot of categories, it may make sense to group some together Example: top 10 ranking, 11 – 25, etc

Interactions Among Dummies 2 Interacting dummy variables is like subdividing the e group Example: have dummies for male, as well as hsgrad and colgrad Add male*hsgrad and male colgrad for a total of 5 dummy variables-> 6 categories e Base group is female Hs dropouts O hsgrad is for female HS grads, colgrad is for female college grads o The interactions reflect male HS grads and male college grads Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 Interactions Among Dummies Interacting dummy variables is like subdividing the group Example: have dummies for male, as well as hsgrad and colgrad Add male*hsgrad and male*colgrad, for a total of 5 dummy variables –> 6 categories Base group is female HS dropouts hsgrad is for female HS grads, colgrad is for female college grads The interactions reflect male HS grads and male college grads

More on dummy Interactions o Formally, the model is y-Bo+ smale S,hsgrad+ &3 colgrad Emale hsgrad Smale colgrad+ Bx+ u, then, for example If male =0 and hsgrad =0 and colgrad =0 Bo+ Bx+u o If male=0 and hsgrad=1 and colgrad=0 y=Bo 8+hsgt rad Bx+ o If male= 1 and hsgrad =0 and colgrad 1=1 by=Bo+s,male +s,colgrad +Smale*colgrad Bx+u Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 More on Dummy Interactions Formally, the model is y = b0 + d1male + d2hsgrad + d3colgrad + d4male*hsgrad + d5male*colgrad + b1x + u, then, for example: If male = 0 and hsgrad = 0 and colgrad = 0 y = b0 + b1x + u If male = 0 and hsgrad = 1 and colgrad = 0 y = b0 + d2hsgrad + b1x + u If male = 1 and hsgrad = 0 and colgrad = 1 y = b0 + d1male + d3colgrad + d5male*colgrad + b1x + u

Other interactions with dummies o Can also consider interacting a dummy variable d. with a continuous variable. x ◆y=Bn+d+Bx+oad*x+l ◆Ifd=0, then y=B+Bx+l o If d=1, then y=(B0+8)+(B, +8,)x+u This is interpreted as a change in the slope Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 Other Interactions with Dummies Can also consider interacting a dummy variable, d, with a continuous variable, x y = b0 + d1d + b1 x + d2d*x + u If d = 0, then y = b0 + b1 x + u If d = 1, then y = (b0 + d1 ) + (b1+ d2 ) x + u This is interpreted as a change in the slope

Example of 80>0 and 8< y=Bo+ y=(Bn+)+(+S)x Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 y x y = b0 + b1 x y = (b0 + d0 ) + (b1 + d1 ) x Example of d0 > 0 and d1 < 0 d = 1 d = 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第三章 产品市场和货币市场的一般均衡.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十五章 宏观经济政策分析.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十三章 国民收入决定.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)导言、第十二章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第九章 生产要素价格决定的供给方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第八章 生产要素价格决定的需求方面.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt
- 清华大学:《微观计量经济学》第九章(9-4) 离散被解释变量模型的扩展.ppt
- 清华大学:《微观计量经济学》第十章(10-1) 受限数据模型.ppt
- 清华大学:《微观计量经济学》第十章(10-2) 持续时间数据模型.ppt