《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data

Time series data y,=Bo+B Brit ◆1. Basic analysis Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Time Series Data yt = b0 + b1 xt1 + . . .+ bk xtk + ut 1. Basic Analysis

Time series vs. Cross sectional Time series data has a ter mporal ordering, unlike cross-section data o Will need to alter some of our assumptions to take into account that we no longer have a random sample of individuals Instead we have one realization of a stochastic (i.e. random) process Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 Time Series vs. Cross Sectional Time series data has a temporal ordering, unlike cross-section data Will need to alter some of our assumptions to take into account that we no longer have a random sample of individuals Instead, we have one realization of a stochastic (i.e. random) process

Examples of Time Series models o A static model relates contemporaneous variables: y,= Bo+ B=+ o A finite distributed lag (FDL) model allows one or more variables to affect y with a lag y=0+C=1+8+82+l o More generally, a finite distributed lag model of order g will include g lags of z Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 Examples of Time Series Models A static model relates contemporaneous variables: yt = b0 + b1 zt + ut A finite distributed lag (FDL) model allows one or more variables to affect y with a lag: yt = a0 + d0 zt + d1 zt-1 + d2 zt-2 + ut More generally, a finite distributed lag model of order q will include q lags of z

Finite Distributed lag models ◆ We can cal all So the impact propensity -it reflects the immediate change in y For a temporary. 1-period change to its original level in period q+7 y returns ◆ We can call S+,+…+ the long-run propensity (lrp)it reflects the long-run change in y atter a permanent change Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 Finite Distributed Lag Models We can call d0 the impact propensity – it reflects the immediate change in y For a temporary, 1-period change, y returns to its original level in period q+1 We can call d0 + d1 +…+ dq the long-run propensity (LRP) – it reflects the long-run change in y after a permanent change

Assumptions for unbiasedness o Still assume a model that is linear in parameters:y-Bo+ Bx+...+ Bkxuk+ Still need to make a zero conditional mean assumption: E(uX=0, t=1, 2,...,n e Note that this implies the error term in any given period is uncorrelated with the explanatory variables in all time periods Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 Assumptions for Unbiasedness Still assume a model that is linear in parameters: yt = b0 + b1 xt1 + . . .+ bk xtk + ut Still need to make a zero conditional mean assumption: E(ut |X) = 0, t = 1, 2, …, n Note that this implies the error term in any given period is uncorrelated with the explanatory variables in all time periods

Assumptions(continued) This zero conditional mean assumption implies the x's are strictly exogenous o An alternative assumption, more parallel to the cross-sectional case, Is E(ulx=0 e This assumption would imply the x's are contemporaneously exogenous o Contemporaneous exogeneity will only be sufficient in large samples Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 Assumptions (continued) This zero conditional mean assumption implies the x’s are strictly exogenous An alternative assumption, more parallel to the cross-sectional case, is E(ut |xt ) = 0 This assumption would imply the x’s are contemporaneously exogenous Contemporaneous exogeneity will only be sufficient in large samples

Assumptions(continued) Still need to assume that no x is constant and that there is no perfect collinearity e Note we have skipped the assumption of a random sample e The key impact of the random sample assumption is that each u: is independent Our strict exogeneity assumption takes care of it in this case Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 Assumptions (continued) Still need to assume that no x is constant, and that there is no perfect collinearity Note we have skipped the assumption of a random sample The key impact of the random sample assumption is that each ui is independent Our strict exogeneity assumption takes care of it in this case

Unbiasedness of ols o Based on these 3 assumptions, when using time-series data, the ols estimators are unbiased e Thus, just as was the case with cross section data, under the appropriate conditions ols is unbiased e Omitted variable bias can be analyzed in the same manner as in the cross-section case Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 Unbiasedness of OLS Based on these 3 assumptions, when using time-series data, the OLS estimators are unbiased Thus, just as was the case with crosssection data, under the appropriate conditions OLS is unbiased Omitted variable bias can be analyzed in the same manner as in the cross-section case

Variances of ols estimators Just as in the cross-section case. we need to add an assumption of homoskedasticity in order to be able to derive variances o Now we assume var(u X)=var(u=0 o Thus, the error variance is independent of all the x's and it is constant over time We also need the assumption of no serial correlation: Corr ws 1X)=0fort≠S Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 Variances of OLS Estimators Just as in the cross-section case, we need to add an assumption of homoskedasticity in order to be able to derive variances Now we assume Var(ut |X) = Var(ut ) = s 2 Thus, the error variance is independent of all the x’s, and it is constant over time We also need the assumption of no serial correlation: Corr(ut ,us | X)=0 for t s

OLS Variances(continued) o Under these 5 assumptions, the OLS variances in the time-series case are the same as in the cross-section case. Also The estimator of o2 is the same ◆ oLS remainS BLue e With the additional assumption of normal errors. inference is the same Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 OLS Variances (continued) Under these 5 assumptions, the OLS variances in the time-series case are the same as in the cross-section case. Also, The estimator of s 2 is the same OLS remains BLUE With the additional assumption of normal errors, inference is the same
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第三章 产品市场和货币市场的一般均衡.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十五章 宏观经济政策分析.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十三章 国民收入决定.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt
- 清华大学:《微观计量经济学》第九章(9-4) 离散被解释变量模型的扩展.ppt
- 清华大学:《微观计量经济学》第十章(10-1) 受限数据模型.ppt
- 清华大学:《微观计量经济学》第十章(10-2) 持续时间数据模型.ppt
- 清华大学:《微观计量经济学》复习提纲.doc
- 《经济学》课程教学资源(讲义)课程国际分工的理论依据.doc
- 武汉理工大学:《世界经济概论》第十四章 国际货币体系.ppt