《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods

Panel data methods B+Bx,1+…kti Vit i Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Panel Data Methods yit = b0 + b1 xit1 + . . . bk xitk + uit

A True panel vs a Pooled Cross section o Often loosely use the term panel data to refer to any data set that has both a cross sectional dimension and a time-series dimension o More precisely it's only data following the same cross-section units over time o Otherwise it's a pooled cross-section Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 A True Panel vs. A Pooled Cross Section Often loosely use the term panel data to refer to any data set that has both a crosssectional dimension and a time-series dimension More precisely it’s only data following the same cross-section units over time Otherwise it’s a pooled cross-section

Pooled cross sections o We may want to pool cross sections just to get bigger sample sizes o We may want to pool cross sections to investigate the effect of time e We may want to pool cross sections to investigate whether relationships have changed over time Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 Pooled Cross Sections We may want to pool cross sections just to get bigger sample sizes We may want to pool cross sections to investigate the effect of time We may want to pool cross sections to investigate whether relationships have changed over time

Difference-in-Differences e Say random assignment to treatment and control groups, like in a medical experiment o One can then simply compare the change in outcomes across the treatment and control groups to estimate the treatment effect o For time 1, 2, groups A, B(y2B-y2A) (yLB-yLA, or equivalently (y2B-yLB 72A-yLA, is the difference-in-differences Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 Difference-in-Differences Say random assignment to treatment and control groups, like in a medical experiment One can then simply compare the change in outcomes across the treatment and control groups to estimate the treatment effect For time 1,2, groups A, B (y2,B – y2,A) - (y1,B – y1,A), or equivalently (y2,B – y1,B) - (y2,A – y1,A), is the difference-in-differences

Difference-in-Differences(cont) o Aregression framework using time and treatment dummy variables can calculate this difference-in-difference as well e Consider the model: yit=Bo t B,afterit+B treatment, o+ B,treatment after t o The estimated B3 will be the difference-in- differences in the group means Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 Difference-in-Differences (cont) A regression framework using time and treatment dummy variables can calculate this difference-in-difference as well Consider the model: yit = b0 + b1 treatmentit + b2afterit + b3 treatmentit*afterit+ uit The estimated b3 will be the difference-indifferences in the group means

Difference-in-Differences(cont) o When don't truly have random assignment the regression form becomes very useful Additional x's can be added to the i regression to control for differences across the treatment and control groups Sometimes referred to as a natural experiment especially when a policy change is being analyzed Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 Difference-in-Differences (cont) When don’t truly have random assignment, the regression form becomes very useful Additional x’s can be added to the regression to control for differences across the treatment and control groups Sometimes referred to as a “natural experiment” especially when a policy change is being analyzed

Two-Period Panel data It's possible to use a panel just like pooled cross-sections. but can do more than that Panel data can be used to address some kinds of omitted variable bias If can think of the omitted variables as being fixed over time, then can model as having a composite error Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 Two-Period Panel Data It’s possible to use a panel just like pooled cross-sections, but can do more than that Panel data can be used to address some kinds of omitted variable bias If can think of the omitted variables as being fixed over time, then can model as having a composite error

Unobserved Fixed Effects o Suppose the population model is yit=Bo+ Cd2+Bxm+…+Bxik+a1+ Here we have added a time-constant component to the error. v,=a, +u o If a, is correlated with the x's, OLS will be biased, since we a is part of the error term o With panel data, we can difference-out the unobserved fixed effect Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 Unobserved Fixed Effects Suppose the population model is yit = b0 + d0d2t + b1 xit1 +…+ bk xitk + ai + uit Here we have added a time-constant component to the error, uit = ai + uit If ai is correlated with the x’s, OLS will be biased, since we ai is part of the error term With panel data, we can difference-out the unobserved fixed effect

First-differences o We can subtract one period from the other to obtain Ayi=+B△xn+…+BAxk+ △ This model has no correlation between the x's and the error term. so no bias Need to be careful about organization of the data to be sure compute correct change Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 First-differences We can subtract one period from the other, to obtain Dyi = d0 + b1Dxi1 +…+ bkDxik + Dui This model has no correlation between the x’s and the error term, so no bias Need to be careful about organization of the data to be sure compute correct change

Differencing w/ Multiple Periods o Can extend this method to more periods o Simply difference adjacent periods e So if 3 periods, then subtract period 1 from period 2, period 2 from period 3 and have 2 observations per individual ◆ Simply estimate by Ols, assuming the△ln are uncorrelated over time Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 Differencing w/ Multiple Periods Can extend this method to more periods Simply difference adjacent periods So if 3 periods, then subtract period 1 from period 2, period 2 from period 3 and have 2 observations per individual Simply estimate by OLS, assuming the Duit are uncorrelated over time
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt
- 清华大学:《微观计量经济学》第九章(9-4) 离散被解释变量模型的扩展.ppt
- 清华大学:《微观计量经济学》第十章(10-1) 受限数据模型.ppt
- 清华大学:《微观计量经济学》第十章(10-2) 持续时间数据模型.ppt
- 清华大学:《微观计量经济学》复习提纲.doc
- 《经济学》课程教学资源(讲义)课程国际分工的理论依据.doc
- 武汉理工大学:《世界经济概论》第十四章 国际货币体系.ppt
- 武汉理工大学:《世界经济概论》课程简述.ppt
- 武汉理工大学:《世界经济概论》世界宏观经济学.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第八章 灰色系统预测.ppt