《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis

Multiple regression analysis y=Bo B Bx+ Bx +.Bkk+u ◆2. Inference Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Multiple Regression Analysis y = b0 + b1 x1 + b2 x2 + . . . bk xk + u 2. Inference

Assumptions of the Classical Linear Model(CLm) So far, we know that given the Gauss Markov assumptions, ols iS BLUE e In order to do classical hypothesis testing we need to add another assumption(beyond the Gauss-Markov assumptions) ◆ Assume that u is independent ofxI,x2,…,xk and u is normally distributed with zero mean and variance 02: u- normal(0, 0) Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 Assumptions of the Classical Linear Model (CLM) So far, we know that given the GaussMarkov assumptions, OLS is BLUE, In order to do classical hypothesis testing, we need to add another assumption (beyond the Gauss-Markov assumptions) Assume that u is independent of x1 , x2 ,…, xk and u is normally distributed with zero mean and variance s 2 : u ~ Normal(0,s 2 )

CLM ASsumptions(cont) o Under CLM, OLS is not only blue, but is the minimum variance unbiased estimator o We can summarize the population assumptions of ClM as follows ◆yx~ Normal(B0+Bx1+…+Bxha) e While for now we just assume normality clear that sometimes not the case e Large samples will let us drop normality Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 CLM Assumptions (cont) Under CLM, OLS is not only BLUE, but is the minimum variance unbiased estimator We can summarize the population assumptions of CLM as follows y|x ~ Normal(b0 + b1 x1 +…+ bk xk , s 2 ) While for now we just assume normality, clear that sometimes not the case Large samples will let us drop normality

The homoskedastic normal distribution with a single explanatory variable fylx E(x)=Bo+ Bx t Normal distributions x Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 . . x1 x2 The homoskedastic normal distribution with a single explanatory variable E(y|x) = b0 + b1x y f(y|x) Normal distributions

Normal Sampling distributions Under the clm assumption s conditiona l on the sample values of the independen t variable s B - NO orma 1 B, vare, l so that B 16) normal l(0,4) B is distribute d normally because it is a linear combinatio n of the errors Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 Normal Sampling Distributions ( ) ( ) ( ) ( ) is a linear combinatio n of the errors is distribute d normally because it ˆ ~ Normal 0,1 ˆ ˆ ,so that ˆ ~ Normal , ˆ the sample values of the independen t variable s Under the CLM assumption s, conditiona l on b j b b b b b b j j j j j j sd Var −

The t test Under the Clm assumption s BB) se Note this is at distributi on( vS norma because we have to estimate o by o2 Note the degrees of freedom: n-k-1 Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 The t Test ( ) ( ) Note the degrees of freedom : 1 because we have to estimate by ˆ Note this is a distributi on (vs normal) ~ ˆ ˆ Under the CLM assumption s 2 2 1 j − − − − − n k t t se n k j j s s b b b

The t Test(cont) o Knowing the sampling distribution for the standardized estimator allows us to carry out hypothesis tests Start with a null hypothesis ◆ For example,H:B=0 o If accept null, then accept that x has no effect on y, controlling for other xs Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 The t Test (cont) Knowing the sampling distribution for the standardized estimator allows us to carry out hypothesis tests Start with a null hypothesis For example, H0 : bj=0 If accept null, then accept that xj has no effect on y, controlling for other x’s

The t Test(cont) To perform our test w e first need to form the"t statistic for B: to sev Ve will then use our t statistic along with We a rejection rule to determine whether to accept the null hypothesis, Ho Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 The t Test (cont) ( ) 0 j ˆ accept the null hypothesis , H a rejection rule to determine whether t o We will then use our statistic along with ˆ ˆ : ˆ "the" statistic for To perform our test w e first need to form t se t t j j j b b b b

t Test: One-Sided Alternatives o Besides our null. h. we need an alternative hypothesis, HI, and a significance level Himay be one-sided, or two-Sided ◆H1:B>0andH1:B<C <O are one-sided H: Bi*0 is a two-sided alternative e If we want to have only a 5% probability of rejecting Ho if it is really true, then we say our significance level is 5% Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 t Test: One-Sided Alternatives Besides our null, H0 , we need an alternative hypothesis, H1 , and a significance level H1 may be one-sided, or two-sided H1 : bj > 0 and H1 : bj < 0 are one-sided H1 : bj 0 is a two-sided alternative If we want to have only a 5% probability of rejecting H0 if it is really true, then we say our significance level is 5%

One-Sided Alternatives(cont) e Having picked a significance level, a,we look up the(1-a)th percentile in a t distribution with n-k-1 df and call this c the critical value o We can reject the null hypothesis if the t statistic is greater than the critical value o If the t statistic is less than the critical value then we fail to reject the null Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 One-Sided Alternatives (cont) Having picked a significance level, a, we look up the (1 – a) th percentile in a t distribution with n – k – 1 df and call this c, the critical value We can reject the null hypothesis if the t statistic is greater than the critical value If the t statistic is less than the critical value then we fail to reject the null
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第三章 产品市场和货币市场的一般均衡.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十五章 宏观经济政策分析.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十三章 国民收入决定.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)导言、第十二章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第九章 生产要素价格决定的供给方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第八章 生产要素价格决定的需求方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第七章 不完全竞争的市场.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第六章 完全竞争市场中的厂商.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第五章 成本论.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt