《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis

Multiple regression analysis y-Bo+ Bx+B2x2+.. Bkrk+u ◆6. Heteroskedastici Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Multiple Regression Analysis y = b0 + b1 x1 + b2 x2 + . . . bk xk + u 6. Heteroskedasticity

What is Heteroskedasticity o Recall the assumption of homoskedasticity implied that conditional on the explanatory variables the variance of the unobserved error u was constant o If this is not true that is if the variance of u is different for different values of the x's then the errors are heteroskedastic Example: estimating returns to education and ability is unobservable, and think the variance in ability differs by educational attainment Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 What is Heteroskedasticity Recall the assumption of homoskedasticity implied that conditional on the explanatory variables, the variance of the unobserved error, u, was constant If this is not true, that is if the variance of u is different for different values of the x’s, then the errors are heteroskedastic Example: estimating returns to education and ability is unobservable, and think the variance in ability differs by educational attainment

Example of Heteroskedasticity ECx)=Bo+ Bx X X X Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 . x1 x2 x f(y|x) Example of Heteroskedasticity x3 . . E(y|x) = b0 + b1x

Why Worry about Heteroskedasticity? oLS is still unbiased and consistent. even if we do not assume homoskedasticity The standard errors of the estimates are biased if we have heteroskedasticity o If the standard errors are biased. we can not use the usual t statistics or f statistics or LM statistics for drawing inferences Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 Why Worry About Heteroskedasticity? OLS is still unbiased and consistent, even if we do not assume homoskedasticity The standard errors of the estimates are biased if we have heteroskedasticity If the standard errors are biased, we can not use the usual t statistics or F statistics or LM statistics for drawing inferences

Variance with Heteroskedasticity for the simple case, B,=B,+ ∑(x-x)x ∑( 、)2,SO 1n)=2(=)3 ssT2 L, where SST-2(x-x) x a valid estimator for this when o is 2(x-x)u? where i are are the ois residual SST Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 Variance with Heteroskedasticity ( ) ( ) ( ) ( ) ( ) ( ) , where ˆ are are the OLS residuals ˆ A valid estimator for this when is , where ˆ ,so ˆ For the simple case, 2 2 2 2 2 i 2 2 2 2 1 1 1 2 i x i i x i x i i i i i u SST x x u SST x x SST x x Var x x x x u − = − − = − − = + b b b

Variance with Heteroskedasticity For the general multiple regression model, a valid estimator of VarlB, with heterosked asticity is ∑ SsT2, Where r, is the i residual from regressing x, on all other independen t variable S, and SST, is the sum of squared residuals from this regression Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 Variance with Heteroskedasticity ( ) ( ) is the sum of squared residuals from this regression regressing on all other independen t variable s, and , where ˆ is the residual from ˆ ˆ ˆ ˆ with heterosked asticity is ˆ estimator of For the general multiple regression model, a valid t h 2 2 j j i j j i j i j j SST x r i SST r u V ar Var b = b

Robust standard errors Now that we have a consistent estimate of the variance, the square root can be used as a standard error for inference o Typically call these robust standard errors Sometimes the estimated variance is corrected for degrees of freedom by multiplying by n/(n-k-1) ◆AsSn→∞ it's all the same, though Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 Robust Standard Errors Now that we have a consistent estimate of the variance, the square root can be used as a standard error for inference Typically call these robust standard errors Sometimes the estimated variance is corrected for degrees of freedom by multiplying by n/(n – k – 1) As n → ∞ it’s all the same, though

Robust Standard Errors(cont) o Important to remember that these robust standard errors only have asymptotic justification -with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t and inferences will not be correct In Stata, robust standard errors are easily obtained using the robust option of reg Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 Robust Standard Errors (cont) Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct In Stata, robust standard errors are easily obtained using the robust option of reg

A robust m statistic Run ols on the restricted model and save the residuals u o Regress each of the excluded variables on all of the included variables(q different regressions) and save each set of residuals r. r e Regress a variable defined to be=l on ri i …,i, with no intercept o The LM statistic is n-SSR, where SSR, is the sum of squared residuals from this final regression Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 A Robust LM Statistic Run OLS on the restricted model and save the residuals ŭ Regress each of the excluded variables on all of the included variables (q different regressions) and save each set of residuals ř1 , ř2 , …, řq Regress a variable defined to be = 1 on ř1 ŭ, ř2 ŭ, …, řq ŭ, with no intercept The LM statistic is n – SSR1 , where SSR1 is the sum of squared residuals from this final regression

Testing for Heteroskedasticity ◆ Essentially want to test H:Var(lx,x2… xk=0, which is equivalent to Ho: E(ux, x2…,x)=E(2)=a2 If assume the relationship between u and x will be linear. can test as a linear restriction ◆So,forl2=o+6x1+…+axk+y)this means testing Ho: 8=8=...=8=0 Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 Testing for Heteroskedasticity Essentially want to test H0 : Var(u|x1 , x2 ,…, xk ) = 2 , which is equivalent to H0 : E(u 2 |x1 , x2 ,…, xk ) = E(u 2 ) = 2 If assume the relationship between u 2 and xj will be linear, can test as a linear restriction So, for u 2 = d0 + d1 x1 +…+ dk xk + v) this means testing H0 : d1 = d2 = … = dk = 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第三章 产品市场和货币市场的一般均衡.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十五章 宏观经济政策分析.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十三章 国民收入决定.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)导言、第十二章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第九章 生产要素价格决定的供给方面.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt
- 清华大学:《微观计量经济学》第九章(9-4) 离散被解释变量模型的扩展.ppt
- 清华大学:《微观计量经济学》第十章(10-1) 受限数据模型.ppt
- 清华大学:《微观计量经济学》第十章(10-2) 持续时间数据模型.ppt
- 清华大学:《微观计量经济学》复习提纲.doc