《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis

Multiple regression analysis y-Bo+Bx+ Bx2+... Bkxk+ Estimation Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Multiple Regression Analysis y = b0 + b1 x1 + b2 x2 + . . . bk xk + u 1. Estimation

Parallels with Simple regression ◆ Bo is still the intercept oB to Pk all called slope parameters uis still the error term(or disturbance Still need to make a zero conditional mean assumption, so now assume that ◆B(lx1x2,…,x)=0 o Still minimizing the sum of squared residuals. so have k+l first order conditions Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 Parallels with Simple Regression b0 is still the intercept b1 to bk all called slope parameters u is still the error term (or disturbance) Still need to make a zero conditional mean assumption, so now assume that E(u|x1 ,x2 , …,xk ) = 0 Still minimizing the sum of squared residuals, so have k+1 first order conditions

Interpreting Multiple regression y=Bo+B,,+ B2x2+.+Bkxk, So △y=△1x1+△B2x2+…+△kxk so holding x, ,,xk fixed implies that △y=△Bx1, that is each B has a ceteris paribus interpreta tion Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 Interpreting Multiple Regression a interpreta tion , that is each has ˆ ˆ so holding ,..., fixed implies that , ˆ ... ˆ ˆ ˆ ,so ˆ ... ˆ ˆ ˆ ˆ 1 1 2 1 1 2 2 0 1 1 2 2 ceteris paribus y x x x y x x x y x x x k k k k k b b b b b b b b b = = + + + = + + + +

A“ Partialling Out” Interpretation Consider t he case where k=2 . ie y=Bo+B,x,+B,x,, then 1,where rl are the residuals from the estimated regression x=ro+y2I Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 A “Partialling Out” Interpretation ( ) 1 0 2 2 1 2 1 1 1 0 1 1 2 2 regression ˆ ˆ ˆ ˆ the residuals from the estimated ˆ ˆ , where ˆ are ˆ , then ˆ ˆ ˆ ˆ Consider t he case where 2, i.e. x x r y r r y x x k i i i i b b b b = + = = + + =

Partialling out continued e Previous equation implies that regressing y on x, and x, gives same effect of x, as regressing y on residuals from a regression ofx, on x 2 o This means only the part of xlt that is uncorrelated with xi2 are being related to y so we re estimating the effect ofx, on y after x, has been"partialled out Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 “Partialling Out” continued Previous equation implies that regressing y on x1 and x2 gives same effect of x1 as regressing y on residuals from a regression of x1 on x2 This means only the part of xi1 that is uncorrelated with xi2 are being related to yi so we’re estimating the effect of x1 on y after x2 has been “partialled out

Simple vs multiple reg estimate Compare the simple regression y=Bo+B,x, with the multiple regression y=Bo+B,,+B2x2 Genera,B1≠ B, unless: B,=0(ie. no partial effect of x,OR x, and x, are uncorrelat ed in the sample Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 Simple vs Multiple Reg Estimate and are uncorrelat ed in the sample ˆ 0 (i.e. no partial effect of ) O R unless : ˆ ~ Generally, ˆ ˆ ˆ with the multiple regression ˆ ~ ~ ~ Compare the simple regression 1 2 2 2 1 1 0 1 1 2 2 0 1 1 x x x y x x y x = = + + = + b b b b b b b b

Goodness-of-Fit We can think of each observatio n as being made up of an explained part, and an unexplained d part, y,=y,+u We then define the following >O-y is the total sum of squares(SST) >O-v is the explained sum of squares(SSE) >u? is the residual sum of squares(SSR) Then sst=sse+ ssr Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 Goodness-of-Fit ( ) ( ) Then SST SSE SSR ˆ is the residual sum of squares (SSR) ˆ is the explained sum of squares (SSE) is the total sum of squares (SST) ˆ ˆ We then define the following : up of an explained part, and an unexplaine d part, We can think of each observatio n as being made 2 2 2 = + − − = + i i i i i i u y y y y y y u

Goodness-of-Fit(continued) How do we think about how well our sample regression line fits our sample data? Can compute the fraction of the total sum of squares (sst)that is explained by the model, call this the R-squared of regression D R2= SSE/SST=1- SSR/SST Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 Goodness-of-Fit (continued) How do we think about how well our sample regression line fits our sample data? Can compute the fraction of the total sum of squares (SST) that is explained by the model, call this the R-squared of regression R2 = SSE/SST = 1 – SSR/SST

Goodness-of-Fit(continued) We can also think of R as being equal to the squared correlatio n coefficien t between the actual y, and the values y C(-y)6-5 Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 Goodness-of-Fit (continued) ( ( )( )) (( ) )(( ) ) − − − − = 2 2 2 2 2 ˆ ˆ ˆ ˆ the actual and the values ˆ the squared correlatio n coefficien t between We can also think of as being equal to y y y y y y y y R y y R i i i i i i

More about R-squared o R2 can never decrease when another independent variable is added to a regression, and usually will increase o Because R2 will usually increase with the number of independent variables, it is not a good way to compare models Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 More about R-squared R2 can never decrease when another independent variable is added to a regression, and usually will increase Because R2 will usually increase with the number of independent variables, it is not a good way to compare models
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第三章 产品市场和货币市场的一般均衡.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十五章 宏观经济政策分析.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十三章 国民收入决定.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)导言、第十二章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第九章 生产要素价格决定的供给方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第八章 生产要素价格决定的需求方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第七章 不完全竞争的市场.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第六章 完全竞争市场中的厂商.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第五章 成本论.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第四章 生产论.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt