《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis

Multiple regression analysis y-Bo+Bx+Bx2+... Bkk+u 23 Asymptotic Properties Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Multiple Regression Analysis y = b0 + b1 x1 + b2 x2 + . . . bk xk + u 3. Asymptotic Properties

Consistency o Under the Gauss-Markov assumptionS OLS IS BLUE, but in other cases it wont al ways be possible to find unbiased estimators In those cases, we may settle for estimators that are consistent, meaning as n>o0, the distribution of the estimator collapses to the parameter value Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 Consistency Under the Gauss-Markov assumptions OLS is BLUE, but in other cases it won’t always be possible to find unbiased estimators In those cases, we may settle for estimators that are consistent, meaning as n → ∞, the distribution of the estimator collapses to the parameter value

Sampling Distributions as n t ni <n<n 2 Bi Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 Sampling Distributions as n b1 n1 n2 n3 n1 < n2 < n3

Consistency of ols o Under the Gauss-Markov assumptions, the OLS estimator is consistent(and unbiased) o Consistency can be proved for the simple regression case in a manner similar to the proof of unbiasedness o Will need to take probability limit(plim)to establish consistency Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 Consistency of OLS Under the Gauss-Markov assumptions, the OLS estimator is consistent (and unbiased) Consistency can be proved for the simple regression case in a manner similar to the proof of unbiasedness Will need to take probability limit (plim) to establish consistency

Proving Consistency B=(x1-元/∑(x1-元 =B+n∑(x1-元x((-) plim B,=B,+Cov(x, u / var(x=B because Cov(xi, u)=0 Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 Proving Consistency ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ) ( ) because ( , ) 0 , ˆ plim ˆ 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 = = + = = + − − = − − − − Cov x u Cov x u Var x n x x u n x x x x y x x i i i i i i b b b b b

A Weaker Assumption For unbiasedness. we assumed a zero conditional mean -E(ux x, ., xk=0 e For consistency, we can have the weaker assumption of zero mean and zero correlation -(u=0 and Cov(x ) =0, for 2...k o Without this assumption, Ols will be biased and inconsistent Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 A Weaker Assumption For unbiasedness, we assumed a zero conditional mean – E(u|x1 , x2 ,…,xk ) = 0 For consistency, we can have the weaker assumption of zero mean and zero correlation – E(u) = 0 and Cov(xj ,u) = 0, for j = 1, 2, …, k Without this assumption, OLS will be biased and inconsistent!

Deriving the Inconsistency Just as we could derive the omitted variable bias earlier. now we want to think about the inconsistency, or asymptotic bias, in this case True model: y=o+Bx,+B,x,+v You think y=Bo+B,x+u, so that u=B,x,+v and, plim B,=B,+,8 where=Cov(xi,x,) var(x) Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 Deriving the Inconsistency Just as we could derive the omitted variable bias earlier, now we want to think about the inconsistency, or asymptotic bias, in this case ( ) ( ) 1 2 1 2 2 1 1 2 0 1 1 0 1 1 2 2 where , ~ and, plim You think : ,so that True model : Cov x x Var x u x v y x u y x x v = = + = + = + + = + + + b b b b b b b b b

Asymptotic Bias(cont) o So, thinking about the direction of the asymptotic bias is just like thinking about the direction of bias for an omitted variable Main difference is that asymptotic bias uses the population variance and covariance, while bias uses the sample counterparts o Remember, inconsistency is a large sample problem-it doesnt go away as add data Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 Asymptotic Bias (cont) So, thinking about the direction of the asymptotic bias is just like thinking about the direction of bias for an omitted variable Main difference is that asymptotic bias uses the population variance and covariance, while bias uses the sample counterparts Remember, inconsistency is a large sample problem – it doesn’t go away as add data

Large Sample Inference Recall that under the clm assumptions the sampling distributions are normal, so we could derive t and F distributions for testing o This exact normality was due to assuming the population error distribution was normal o This assumption of normal errors implied that the distribution of y, given the xs, was normal as well Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 Large Sample Inference Recall that under the CLM assumptions, the sampling distributions are normal, so we could derive t and F distributions for testing This exact normality was due to assuming the population error distribution was normal This assumption of normal errors implied that the distribution of y, given the x’s, was normal as well

Large Sample inference(cont) Easy to come up with examples for which this exact normality assumption will fail e Any clearly skewed variable, like wages arrests, savings, etc. cant be normal, since a normal distribution is symmetric o Normality assumption not needed to conclude ols iS BLue, only for inference Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 Large Sample Inference (cont) Easy to come up with examples for which this exact normality assumption will fail Any clearly skewed variable, like wages, arrests, savings, etc. can’t be normal, since a normal distribution is symmetric Normality assumption not needed to conclude OLS is BLUE, only for inference
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第一章 引论(韩纪江).ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第十六章 宏观经济政策实践.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第三章 产品市场和货币市场的一般均衡.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十五章 宏观经济政策分析.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)第十三章 国民收入决定.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,宏观部分)导言、第十二章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第九章 生产要素价格决定的供给方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第八章 生产要素价格决定的需求方面.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第七章 不完全竞争的市场.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第六章 完全竞争市场中的厂商.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt
- 清华大学:《微观计量经济学》第九章(9-4) 离散被解释变量模型的扩展.ppt