《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch15 nstrumental variables 2SlS

Instrumental variables 2Sls y-Bo+ Bx+B2x2+.. Bkrk+u ◆x1=兀n+x1z+x2+..xx+v Economics 20- Prof anderson
Economics 20 - Prof. Anderson 1 Instrumental Variables & 2SLS y = b0 + b1 x1 + b2 x2 + . . . bk xk + u x1 = p0 + p1 z + p2 x2 + . . . pk xk + v

Why use instrumental variables? o Instrumental Variables(Iv) estimation is used when your model has endogenous xs ◆ That is, whenever cov(x,u)≠0 Thus. Iv can be used to address the problem of omitted variable bias o Additionally, iv can be used to solve the classic errors-in-variables problem Economics 20- Prof anderson
Economics 20 - Prof. Anderson 2 Why Use Instrumental Variables? Instrumental Variables (IV) estimation is used when your model has endogenous x’s That is, whenever Cov(x,u) ≠ 0 Thus, IV can be used to address the problem of omitted variable bias Additionally, IV can be used to solve the classic errors-in-variables problem

What is an instrumental variable? In order for a variablez to serve as a valid instrument for x, the following must be true The instrument must be exogenous ◆ That is,Cov(z,u)=0 The instrument must be correlated with the endogenous variable x ◆ That is,Cov(=,x)≠0 Economics 20- Prof anderson
Economics 20 - Prof. Anderson 3 What Is an Instrumental Variable? In order for a variable, z, to serve as a valid instrument for x, the following must be true The instrument must be exogenous That is, Cov(z,u) = 0 The instrument must be correlated with the endogenous variable x That is, Cov(z,x) ≠ 0

More on valid instruments We have to use common sense and economic theory to decide if it makes sense to assume Cov(z, u)=0 We can test if Cov(E, x)#0 e Just testing Ho: T=0 inx=7o+2+v e Sometimes refer to this regression as the first-stage regression Economics 20- Prof anderson 4
Economics 20 - Prof. Anderson 4 More on Valid Instruments We have to use common sense and economic theory to decide if it makes sense to assume Cov(z,u) = 0 We can test if Cov(z,x) ≠ 0 Just testing H0 : p1 = 0 in x = p0 + p1 z + v Sometimes refer to this regression as the first-stage regression

IV Estimation in the simple Regression Case For y-Bo+Bx+u, and given our assumptions e CoV(E, y)=B, Cov(z, x)+Cov(z, u), so ◆B1=C0V(y)/CoV(x) Then the Iv estimator for B, is ∑(-Xv-y Economics 20- Prof anderson 5
Economics 20 - Prof. Anderson 5 IV Estimation in the Simple Regression Case For y = b0 + b1 x + u, and given our assumptions Cov(z,y) = b1Cov(z,x) + Cov(z,u), so b1 = Cov(z,y) / Cov(z,x) Then the IV estimator for b1 is ( )( ) ( )( ) − − − − = z z x x z z y y i i i i 1 b ˆ

Inference with v estimation o The homoskedasticity assumption in this case is E(l21-)=a2=Var() e As in the ols case, given the asymptotic variance we can estimate the standard error 2 a)=- C nop 2 selB SSTR Economics 20- Prof anderson 6
Economics 20 - Prof. Anderson 6 Inference with IV Estimation The homoskedasticity assumption in this case is E(u 2 |z) = s2 = Var(u) As in the OLS case, given the asymptotic variance, we can estimate the standard error ( ) ( ) 2 , 2 1 2 , 2 2 1 ˆ ˆ ˆ x x z x x z SST R se n Var s b s s b = =

IV versus ols estimation Standard error in iv case differs from ols only in the R2 from regressing x on z o Since R2< 1, Iv standard errors are larger However. iv is consistent. while ols is inconsistent, when Cov(x,u)#0 o The stronger the correlation between z and x. the smaller the iv standard errors Economics 20- Prof anderson 7
Economics 20 - Prof. Anderson 7 IV versus OLS estimation Standard error in IV case differs from OLS only in the R2 from regressing x on z Since R2 < 1, IV standard errors are larger However, IV is consistent, while OLS is inconsistent, when Cov(x,u) ≠ 0 The stronger the correlation between z and x, the smaller the IV standard errors

The effect of poor instruments o What if our assumption that Cov(E,u)=0 is false? o The iv estimator will be inconsistent. too s Can compare asymptotic bias in Ols and Iv ◆ Prefer Iv if cori(二,u)Cor(二,x)<Cor(x, IV: plim B,=B orr(z,u) orr(z,x)0 OLS: plim B=B+Corr(x,u.u Economics 20- Prof anderson 8
Economics 20 - Prof. Anderson 8 The Effect of Poor Instruments What if our assumption that Cov(z,u) = 0 is false? The IV estimator will be inconsistent, too Can compare asymptotic bias in OLS and IV Prefer IV if Corr(z,u)/Corr(z,x) < Corr(x,u) x u x u Corr x u Corr z x Corr z u s s b b s s b b = + • = + • ( , ) ~ OLS: plim ( , ) ( , ) ˆ IV : plim 1 1 1 1

IV Estimation in the multiple Regression Case EStimation can be extended to the multiple regression case o Call the model we are interested in estimating the structural model Our problem is that one or more of the variables are endogenous We need an instrument for each endogenous variable Economics 20- Prof anderson 9
Economics 20 - Prof. Anderson 9 IV Estimation in the Multiple Regression Case IV estimation can be extended to the multiple regression case Call the model we are interested in estimating the structural model Our problem is that one or more of the variables are endogenous We need an instrument for each endogenous variable

Multiple regression Iv(cont) e Write the structural model as y-Bo+ By +B221+ui, where y2 is endogenous and z Is eXogenous o Let z, be the instrument, so Cov(z,,u)=0 ane d y2=To+=1+1222+v2, where 2+0 This reduced form equation regresses the endogenous variable on all exogenous ones Economics 20- Prof anderson 10
Economics 20 - Prof. Anderson 10 Multiple Regression IV (cont) Write the structural model as y1 = b0 + b1 y2 + b2 z1 + u1 , where y2 is endogenous and z1 is exogenous Let z2 be the instrument, so Cov(z2 ,u1 ) = 0 and y2 = p0 + p1 z1 + p2 z2 + v2 , where p2 ≠ 0 This reduced form equation regresses the endogenous variable on all exogenous ones
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch14 Fixed Effects estimation.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch13 Panel data methods.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch12 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch11 Stationary Stochastic Process.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch10 Time series data.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch09 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch08 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch07 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch06 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch05 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch04 Multiple regression analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch03 Multiple regression Analysis.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch02 The Simple regression model.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch01 Why study econometrics.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第一章 导言、第二章 需求、供给、价格 Demand,Supply & Equilibrium Price、第三章 弹性理论 The Theory of Elasticity.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第十章 国民收入决定理论、第十一章 失业与通货膨胀、第十二章 经济周期理论 business cycle、第十三章 经济增长理论、第十四章 宏观经济政策.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第七章 厂商均衡理论、第八章 分配理论、第九章 国民收入核算.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件)第四章 消费者行为理论、第五章 生产理论、第六章 成本与收益.ppt
- 温州大学:《西方经济学 Economics》课程教学资源(试卷习题)学习题解答.doc
- 温州大学:《西方经济学 Economics》课程教学资源(PPT课件,微观部分)第二章 需求和供给曲 Demand-Supply.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch16 Simultaneous Equations.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch17 Limited Dependent variables.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch18 Testing for Unit roots.ppt
- 《计量经济学》课程教学资源(PPT课件讲稿,英文版)ch19 Summary and conclusions.ppt
- 清华大学:《微观计量经济学》第八章(8-1) 平行数据模型——变截距模型.ppt
- 清华大学:《微观计量经济学》第八章(8-2) 平行数据模型——扩展模型.ppt
- 清华大学:《微观计量经济学》第九章(9-1) 二元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-2) 多元选择模型.ppt
- 清华大学:《微观计量经济学》第九章(9-3) 离散计数数据模型.ppt
- 清华大学:《微观计量经济学》第九章(9-4) 离散被解释变量模型的扩展.ppt
- 清华大学:《微观计量经济学》第十章(10-1) 受限数据模型.ppt
- 清华大学:《微观计量经济学》第十章(10-2) 持续时间数据模型.ppt
- 清华大学:《微观计量经济学》复习提纲.doc
- 《经济学》课程教学资源(讲义)课程国际分工的理论依据.doc
- 武汉理工大学:《世界经济概论》第十四章 国际货币体系.ppt
- 武汉理工大学:《世界经济概论》课程简述.ppt
- 武汉理工大学:《世界经济概论》世界宏观经济学.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第八章 灰色系统预测.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第二章 定性预测方法.ppt
- 河海大学:《经济预测与决策方法》课程教学资源(PPT课件)第九章 决策概述.ppt