《经济数学基础》课程PPT教学课件(概率统计)第四章 随机变量的数字特征 第1节 数学期望

第四章 随机变量的数字特征 §1数学期望 §1数学期望 例1:某班有N个人,其中有n,个人为a分,i=1,2,.k, 求平均成绩。 解: 平均成绩为: 若用X表示成绩,则PX=a}≈ 立a是立a,x=a} 合】返回主目录
例 1:某班有 N 个人,其中有 i n 个人为 i a 分,i = 1,2,k , n N k i i = =1 , 求平均成绩。 第四章 随机变量的数字特征 §1 数学期望 §1 数学期望 解: 平均成绩为: = = = k i i i k i i i N n a n a N 1 1 1 若用 X表示成绩,则 N n P X a i { = i } = = = k i i i k i i i a P X a N n a 1 1 { } 返回主目录

第四章 随机变量的数字特征 1、数学期望定义 §1数学期望 (1)离散型 设离散型随机变量X的分布律为: P{X=xk}=Pk,k=1,2,.) 若级数∑xP:绝对收敛, 则称级数∑xP:的和为随机变量x的数学期望。 记为EX,即EX-∑x:· 数学期望也称为均值。 合】返回主目录
1、数学期望定义 设离散型随机变量 X 的分布律为: k pk P{X = x } = ,k = 1,2, , 若级数 i=1 k pk x 绝对收敛, 则称级数 i=1 k pk x 的和为随机变量 X 的数学期望。 记为 EX,即 EX= k=1 k pk x 。 (1) 离散型 第四章 随机变量的数字特征 §1 数学期望 数学期望也称为均值。 返回主目录

第四章 随机变量的数字特征 §1数学期望 (2)连续型 设连续型随机变量X的概率密度为f(x), 若积分∫fx)d绝对收敛,则称积分∫fx)d 的值为X的数学期望。记为EX=了k, 数学期望也称为均值。 合】返回主目录
设连续型随机变量 X 的概率密度为 f (x), 若积分 − x f (x)dx绝对收敛,则称积分 − x f (x)dx 的值为 X 的数学期望。记为 EX= − x f (x)dx, 数学期望也称为均值。 (2)、连续型 第四章 随机变量的数字特征 §1 数学期望 返回主目录

第四章 随机变量的数字特征 说明 §1数学期望 ()X的熟条钼11X企的丛厚 的张恤s关1 H习5偕匹2y明知已f繁 杀F本问厚·囝F·首电泉涵熟∑b海纠 (⑤)甲土厘企雪X奈軸看羊坐的香饵企雪X 合】返回主目录
第四章 随机变量的数字特征 说 明 §1 数学期望 (1) X的数学期望刻划了X 变化的平均值. 的求和顺序无关. 时,才能保证级数 的和与其级数 变化的平均值,因此,只有当级数 绝对收敛 由于随机变量 的数学期望表示的是随机变量 = = = 1 1 1 (2) n n n n n n n n n x p x p x p X X 返回主目录

第四章 随机变量的数字特征 例2 §1数学期望 由了¥丫头平·p]的斟果火本甲上肇总 X:由平中议新 人:了平中的业新 X 8 9 10 P 0.1 0.3 0.6 Y 8 9 10 P 0.2 0.5 0.3 回邮一↓丫的朗平K本學s 合返回主目录
第四章 随机变量的数字特征 §1 数学期望 甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数; Y:乙击中的环数; X 8 9 10 P 0.1 0.3 0.6 Y 8 9 10 P 0.2 0.5 0.3 试问哪一个人的射击水平较高? 例2 返回主目录

第四章 随机变量的数字特征 例2(续) §1数学期望 斟: 由了的本羽业2 EX=8×0J+ò×03+I0×0Q=ò2 E人=8×05+ò×02+J0×03=òJ 国FY本的业彩下昙·由的润平K本童R了的任· 合】返回主目录
第四章 随机变量的数字特征 §1 数学期望 解: 例2(续) 甲、乙的平均环数可写为 EX = 80.1+ 90.3+10 0.6 = 9.5 EY =80.2+90.5+100.3= 9.1 因此,从平均环数上看,甲的射击水平要比乙的好. 返回主目录

第四章 随机变量的数字特征 例3 §1数学期望 径厘企雪X胳YC9rc斗芈·首最耷犀)P 让I+ 1因=万 (o<¥<+o) 甲王士 三十00 -00 浮幸诅A()g业裸洱函四E以业华年 十00 合】返回主目录
第四章 随机变量的数字特征 §1 数学期望 设随机变量X 服从Cauchy分布,其密度函数为 由于 ( ) + − x f x dx ( ) (− +) + = x x f x 2 1 1 1 + − + = dx x x 2 1 1 + + = 0 2 1 2 dx x x ( ) + = + 0 2 ln 1 1 x = + 这表明积分 ( ) 不绝对收敛, + − xf x d x 因而EX 不存在. 例3 返回主目录

第四章 随机变量的数字特征 §1数学期望 例4 设离散型随机变量X的分布律为: 0 2 P 0.10.20.7 则 EX=0*0.1+1*0.2+2*0.7=1.6 若离散型随机变量X的分布律为: X 0 1 2 P0.70.20.1 则 EX=0*0.7+1*0.2+2*0.1=0.4 此例说明了数学期望更完整地刻化了x的均值状态。 [合】返回主目录
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7 例 4 则 EX = 0*0.1+1*0.2+2*0.7 =1.6 若离散型随机变量 X 的分布律为: X 0 1 2 P 0.7 0.2 0.1 则 EX = 0*0.7+1*0.2+2*0.1 =0.4 第四章 随机变量的数字特征 §1 数学期望 此例说明了数学期望更完整地刻化了x的均值状态。 返回主目录

第四章 随机变量的数字特征 例5 按规定,火车站每天800~900,9:00~10:00都恰 有一辆客车到站,但到站的时刻是随机的,且两 者到站的时间相互独立,其规律为: 到站时间8:10,9:10 8:30,9:30 8:50,9:50 概率 1/6 3/6 2/6 (1)旅客8:00到站,求他侯车时间的数学期望。 (2)旅客820到站,求他侯车时间的数学期望。 解:设旅客的候车时间为X(以分记) (1)X的分布律:X10 3050 P1/6 3162/6 EX=10*(1/6)+30*(376)+50*(2/6)=33.33(分) 合】返回主目录
按规定,火车站每天 8:00~9:00, 9:00~10:00 都恰 有一辆客车到站,但到站的时刻是随机的,且两 者到站的时间相互独立,其规律为: 到站时间 8:10,9:10 8:30,9:30 8:50,9:50 概率 1/6 3/6 2/6 例 5 解:设旅客的候车时间为 X(以分记) (1) X 的分布律: X 10 30 50 P 1/6 3/6 2/6 EX=10*(1/6)+30*(3/6)+50*(2/6)=33.33(分) 第四章 随机变量的数字特征 (1) 旅客 8:00 到站,求他侯车时间的数学期望。 (2) 旅客 8:20 到站,求他侯车时间的数学期望。 返回主目录

第四章 随机变量的数字特征 §1数学期望 (2)旅客8.20分到达 X的分布率为 X103050 70 90 P3/62/6(1/6)*(1/6)(3/6)*(1/6)(2/6)*(1/6) EX=10*(3/6)+30*(2/6)+50*(1/36)+70*(3/36)+90*(2/36) =27.22(分) 到站时间 8:10.910 8:30.930 8:509:50 概率 1/6 316 216 合】返回主目录
X 10 30 50 70 90 P 3/6 2/6 (1/6)*(1/6) (3/6)*(1/6) (2/6)*(1/6) EX=10*(3/6)+30*(2/6)+50*(1/36) +70*(3/36) +90*(2/36) =27.22(分) 第四章 随机变量的数字特征 §1 数学期望 到站时间 8:10,9:10 8:30,9:30 8:50,9:50 概率 1/6 3/6 2/6 (2)旅客8:20分到达 X的分布率为 返回主目录
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《经济数学基础》课程PPT教学课件(概率统计)第三章 多维随机变量及其分布 第5节 多维随机变量函数的分布.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第三章 多维随机变量及其分布 第4节 随机变量的独立性.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第三章 多维随机变量及其分布 第3节 条件分布.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第四章 随机变量的数字特征 第5节 矩.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第六章 样本及抽样分布.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第五章 大数定律及中心极限定理.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第七章 参数估计.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第二章 随机变量及其分布 第1节 随机变量.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第一章 概率论的基本概念 第5节 n重贝努里概型.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第一章 概率论的基本概念 第4节 独立性.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第一章 概率论的基本概念 第3节 条件概率.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第一章 概率论的基本概念 第2节 等可能概型与几何概型.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第一章 概率论的基本概念 第1节 随机事件的概率.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第二章 随机变量及其分布 第4节 连续型随机变量的概率密度.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第二章 随机变量及其分布 第3节 随机变量的分布函数.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第二章 随机变量及其分布 第2节 离散型随机变量.ppt
- 《经济数学基础》课程PPT教学课件(线性代数)第三章 向量空间(习题课).ppt
- 《经济数学基础》课程PPT教学课件(线性代数)第三章 向量空间(4/4).ppt
- 《经济数学基础》课程PPT教学课件(线性代数)第四章 线性方程组.ppt
- 《经济数学基础》课程PPT教学课件(线性代数)第五章 矩阵的对角化问题(3/3).ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第四章 随机变量的数字特征 第2节 方差.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第四章 随机变量的数字特征 第3节 几种重要随机变量的数学期望及方差.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第四章 随机变量的数字特征 第4节 协方差及相关系数.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第三章 多维随机变量及其分布 第1节 二维随机变量.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第三章 多维随机变量及其分布 第2节 边缘分布.ppt
- 《经济数学基础》课程PPT教学课件(概率统计)第二章 随机变量及其分布 第5节 随机变量的函数的分布.ppt
- 《经济数学基础》课程教学资源(PPT讲稿)实验2 缉私艇追击走私船.ppt
- 《经济数学基础》课程教学资源(PPT讲稿)实验3 螺旋线与平面的交点.ppt
- 重庆工商大学:《经济数学基础》课程教学资源(作业习题)微积分(习题).doc
- 重庆工商大学:《经济数学基础》课程教学资源(作业习题)微积分(答案).doc
- 重庆工商大学:《经济数学基础》课程教学资源(作业习题)线性代数(习题).doc
- 重庆工商大学:《经济数学基础》课程教学资源(作业习题)线性代数及概率统计(答案).doc
- 《经济数学基础》课程教学资源(作业习题)概率统计习题(无答案).doc
- 重庆工商大学:《经济数学基础》课程教学资源(作业习题)概率统计(习题).doc
- 《经济数学基础》课程PPT教学课件(线性代数)第三章 向量空间(3/4).ppt
- 《经济数学基础》课程PPT教学课件(概率统计)课程辅助信息.ppt
- 《数学模型与数学实验》课程书籍文献(数学建模算法大全)第01章 线性规划.pdf
- 《数学模型与数学实验》课程书籍文献(数学建模算法大全)第02章 整数规划.pdf
- 《数学模型与数学实验》课程书籍文献(数学建模算法大全)第03章 非线性规划.pdf
- 《数学模型与数学实验》课程书籍文献(数学建模算法大全)第04章 动态规划.pdf