东南大学:《计算机视觉基础》课程教学资源(课程介绍)

计算机视觉基础 齐志 东南大学信息科学与工程学院 1什么是计算机视觉? 2为什么要学习计算机视觉? 3怎样学习计算机视觉? 东南大学信息科学与工程学院
1 计算机视觉基础 齐志 东南大学 信息科学与工程学院 东南大学 信息科学与工程学院 1.什么是计算机视觉? 2.为什么要学习计算机视觉? 3.怎样学习计算机视觉?

What is computer vision? a computer +a connected camera? No! What is computer vision? what we see is that every picture tells a story
2 What is computer vision? a computer + a connected camera? No! what we see is that every picture tells a story. What is computer vision?

What is computer vision? What a co omputer can see is a matrix containing number What is computer vision? The goal of computer vision is to bridge the gap between meanings and numbers
3 186 178 164 182 189 197 192 182 166 176 181 193 195 184 167 174 178 192 206 195 176 174 175 202 210 196 173 172 173 203 216 198 169 169 171 205 What a computer can see is a matrix containing numbers. What is computer vision? The goal of computer vision is to bridge the gap between meanings and numbers. What is computer vision?

meanings What is it related to a Closely related fields of study Artificial intelligence and machine learning(CS) Spatial statistics(Math/Stats) age prc ng (ee/Ce Algorithms and optimization( CS/OR) Optics and reflectance models(Physics Human visual perception and cognition(Psych) Animal vision(neuroscience)
4 meanings numbers Closely related fields of study – Artificial intelligence and machine learning (CS) – Spatial statistics (Math/Stats) – Image processing (EE/CE) – Algorithms and optimization (CS/OR) – Optics and reflectance models (Physics) – Human visual perception and cognition (Psych) – Animal vision (Neuroscience) What is it related to?

What is it related to? Biology Psychology Neuroscience Engineering Cognitiv Robotics scIence Compute Speech Computer Vision nformation retrieval hine lea What is it related to? a Bscically, it's a interdisciplinary science concerned with the theory behind artificial systems that extract information from images
5 What is it related to? What is it related to? Bscically, it’s a interdisciplinary science concerned with the theory behind artificial systems that extract information from images

Why Computer vision? ■ It is everywhere It is usefu It is difficult a It is everywhere Wherever theres a camera, there is a potential computer vision application
6 It is everywhere. It is useful. It is difficult. Why Computer vision? It is everywhere. Wherever there’s a camera, there is a potential computer vision application

It is useful for its wide range of application areas Controll Detecting events Organizing information Modeling objects or environments Interaction Next, show some state of the art examples Vision in Space NASAS Mars Exploration Rover Spirit
7 It is useful for its wide range of application areas – Controlling processes – Detecting events – Organizing information – Modeling objects or environments – Interaction – … Next, show some state of the art examples NASA'S Mars Exploration Rover Spirit Vision in Space

3D Scanning The Digital Michelangelo Project, which builds the precise 3D model with the accuracy of 0.29mm Vision-based biometric GEOGRAPHIC How the afghan girl was identified by her iris patterns
8 The Digital Michelangelo Project, which builds the precise 3D model with the accuracy of 0.29mm 3D Scanning How the afghan girl was identified by her iris patterns Vision-based Biometric

Optical Character Recognition(OCR) Levet 5 LYCH428 4YCH428 LYCH428 Technology to convert scanned documents to text, which is opular in todays scanner 3D Urban Modeling Bing maps, Google Streetview
9 Technology to convert scanned documents to text, which is popular in today’s scanner. Optical Character Recognition (OCR) Bing maps, Google Streetview 3D Urban Modeling

Smart Cars- Automobile Saf Our Vision. Your Safety. EyeQ vi np on > Vision Applications ,AWS warn system testran Protertion and mate Vision systems in high-end BMW, Gm, volvo models In mid 2010 Mobileye will launch a world's first application offull emergency braking for collision mitigation for pedestrians where vision is the key technology for detecting Mobile Object Recognition Recognize the object through the mobile camera immediately
10 Vision systems in high-end BMW, GM, Volvo models “In mid 2010 Mobileye will launch a world's first application of full emergency braking for collision mitigation for pedestrians where vision is the key technology for detecting pedestrians.” Smart Cars – Automobile Safty Mobile Object Recognition Recognize the object through the mobile camera immediately
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 天津大学:基因序列的比对、挖掘和功能分析(邹权).ppt
- 河南中医药大学:《数据库规划与设计》课程教学资源(Oracle实验指导)实验7 创建及管理Oracle数据表.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)12 Block Chain 区块链 - 密码解决方案集大成者.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)11.2 Web & EC Security.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)11.1 IP Security.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)09-10(2/2)Authentication – Basic protocol constructions – Kerberos.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)09-10(1/2)Authentication - 身份认证.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)07-08 PKI(Public Key Infrastructure)公钥基础设施——公钥技术的应用.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)06 Stream Cipher.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)05 Message authentication and Hash function.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)04 Public Key Cryptography, RSA.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)03 Modern Block Ciphers.pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)02 Introduction to Cryptography -Classical Encryption Techniques(cont.).pdf
- 复旦大学:《密码学基础》课程教学资源(课件讲稿)01 Classical Encryption Techniques.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_14 - Synchronization.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_13- Collective behaviors+Drone flocking.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_12- Community+Opinion dynamics+consensus.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_11- Spreading on networks.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_10- Evolutionary game.pdf
- 复旦大学:《网络科学导论 Introduction to Network Science》教学课件_9- TimeseriesNetworks and ECG.pdf
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第10讲 计算机辅助翻译的具体工作流程.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第11讲 翻译项目的管理.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第12讲(实践课3).ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第13讲(讨论课1).ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第14讲 基于CAT翻译记忆库的翻译研究.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第15讲(讨论课2).ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第16讲 计算机辅助翻译技术的发展前景.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第17讲 本地化与翻译的发展和革新.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第18讲(讨论课3).ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第1讲《计算机辅助翻译》课程内容与发展历史.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第2讲 计算机辅助翻译的主要形式.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第3讲 CAT的核心技术——翻译记忆库介绍.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第4讲 语言资源模板字段和设置.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第5讲 翻译记忆库的维护、Winalign的使用与翻译文件批量导入.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第6讲(实践课1).ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第7讲 CAT的重要辅助功能——术语库介绍.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第8讲 术语库的批量导入、导出与维护.ppt
- 《计算机辅助翻译》课程PPT教学课件(Computer Aided Translation)第9讲(实践课2).ppt
- 重庆科技学院:《建模与系统仿真》课程教学资源(PPT课件讲稿)第一章 Matlab入门与应用(主讲:王晓峰).pptx
- 重庆科技学院:《建模与系统仿真》课程教学资源(PPT课件讲稿)第三章 拟合(基本原理、引例).ppt