电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 3 TransformDomain-Representation of Discrete-Time Signals

Chapter 3 Transform-Domain Representation of Discrete-Time Signals
Chapter 3 Transform-Domain Representation of Discrete-Time Signals

83.1 Discrete-Time Fourier Transform Definition The discrete-time fourier transform TFT)X(eJo ) of a sequence xn is given by X(e O )=∑xnle on 1=-00 n general, X(ejo )is a complex function of the real variable o and can be written as X(ejo)=xre(eJo)+j Xim(ejo)
§3.1 Discrete-Time Fourier Transform • Definition - The discrete-time Fourier transform (DTFT) X(ej) of a sequence x[n] is given by =− − = n j j n X e x n e ( ) [ ] X(ej) = Xre(ej) + j Xim(ej) In general, X(ej) is a complex function of the real variable and can be written as

83.1 Discrete-Time Fourier Transform Xr(eo)and xim(eo)are, respectively, the real and imaginary parts of x(eJo), and are real functions of o 。x(e°) can alternately be expressed as X(ejo)= X(ejo) eje(@) where 6(0)=arg{X(e)}
§3.1 Discrete-Time Fourier Transform • Xre(ej) and Xim(ej) are, respectively, the real and imaginary parts of X(ej) , and are real functions of • X(ej) can alternately be expressed as X(ej) = | X(ej) |ej() where () = arg{X(ej) }

83.1 Discrete-Time Fourier Transform X(eo) is called the magnitude function e(o)is called the phase function Both quantities are again real functions In many applications, the dtft is called the fourier spectrum Likewise, X(ejo)l and e(@) are called the magnitude and phase spectra
§3.1 Discrete-Time Fourier Transform • | X(ej) | is called the magnitude function • () is called the phase function • Both quantities are again real functions of • In many applications, the DTFT is called the Fourier spectrum • Likewise, | X(ej) | and () are called the magnitude and phase spectra

83.1 Discrete-Time Fourier Transform For a real sequence xn, X(ejo) and Xre(ejo) are even functions of o, whereas, H(o)and Xim(ejo)are odd functions of a Note: X(ejo)= X(ejo) ejb(o+Tk) I X(ejo)jeje(o) for any integer k uniquely specified for any DTA o The phase function A(@)cannot be
§3.1 Discrete-Time Fourier Transform • For a real sequence x[n], | X(ej) | and Xre(ej) are even functions of , whereas, () and Xim(ej) are odd functions of • Note: X(ej) = | X(ej) |ej(+2k) = | X(ej) |ej() for any integer k • The phase function () cannot be uniquely specified for any DTFT

83.1 Discrete-Time Fourier Transform Unless otherwise stated, we shall assume that the phase function ((o) is restricted to the following range of values π≤θ(0)≤ called the principal value
§3.1 Discrete-Time Fourier Transform • Unless otherwise stated, we shall assume that the phase function () is restricted to the following range of values: - () called the principal value

83.1 Discrete-Time Fourier Transform The DTFTs of some sequences exhibit discontinuities of 2t in their phase responses An alternate type of phase function that is a continuous function of o is often used It is derived from the original phase function by removing the discontinuities of2π
§3.1 Discrete-Time Fourier Transform • The DTFTs of some sequences exhibit discontinuities of 2 in their phase responses • An alternate type of phase function that is a continuous function of is often used • It is derived from the original phase function by removing the discontinuities of 2

83.1 Discrete-Time Fourier Transform Example-The dtFT of the unit sample sequence 8n is given by △(e)=∑8[neon=8O]=1 Example- Consider the causal sequence x[n]=a"u[n]a<1
§3.1 Discrete-Time Fourier Transform • Example - The DTFT of the unit sample sequence d[n] is given by ( ) = d[ ] = d[0] =1 − =− j n n j e n e x[n] = [n], 1 n • Example - Consider the causal sequence

83.1 Discrete-Time Fourier Transform · Its DTFT is given by 1= n=o e on X(e/0)=∑ un]e j=∑a ∑(oe-)=.1 0 1-ae o ae Jo=a <1
§3.1 Discrete-Time Fourier Transform • Its DTFT is given by = = = − =− − 0 ( ) [ ] n n j n n j n j n X e n e e − − = − = = j e n j n e 1 1 0 ( ) = 1 − j as e

83.1 Discrete-Time Fourier Transform The magnitude and phase of the dtft ⅹ(e°) 1/(1-0.5e-Jo)are shown below 04 0.4
§3.1 Discrete-Time Fourier Transform • The magnitude and phase of the DTFT X(ej) = 1/(1 – 0.5e-j) are shown below
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 燕山大学信息科学与工程学院:《通信原理》 第四章 模拟调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第十一章 同步原理.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第六章 正弦载波数字调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第八章 数字信号的最佳接收.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第五章 数字信号基带传输系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第二章 随机信号分析.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第九章 差错控制编码.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第三章 信道与噪声.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第七章 模拟信号的数字传输.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第一章 绪论.ppt
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.4-8.6).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.1-8.3).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第七章 离散时间系统的时域分析(7.4-7.5).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第七章 离散时间系统的时域分析(7.1-7.3).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第六章 连续时间系统的系统函数(6.5-6.7).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第六章 连续时间系统的系统函数(6.1-6.4).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第五章 连续时间系统的复频域分析(5.7-5.9).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第五章 连续时间系统的复频域分析(5.10-5.11).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第十一章 线性系统的状态变量分析.pdf
- 东南大学:《信号与线性系统》课程教学资源(无线电系及生医系信号与系统期中考试试题答案).pdf
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Digital Processing of Continuous-Time Signals.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 6 Digital Filter Structures.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Digital Filter Design.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Analysis of Finite Wordlength Effects.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 0 introduction.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 1 Continuous-time Signals and systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 2 discrete time signal and system.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Some key points.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验1.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验2.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验3.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验4.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验5.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验6.doc
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第一章 半导体管件.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第二章 基本放大电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第三章 多级放大电路和集成电路运算放大器.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第四章 放大电路的频率响应.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第五章 反馈.ppt