电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Digital Filter Design

Chapter 7 Digital Filter Design
Chapter 7 Digital Filter Design

Obiective- Determination of a realizable transfer function G(z approximating a gIven frequency response specification IS an important step in the development of a digital filter If an IR flter is desired, g(z) should be a stable real rational function Digital filter design is the process of deriving the transfer function g(z)
• Objective - Determination of a realizable transfer function G(z) approximating a given frequency response specification is an important step in the development of a digital filter • If an IIR filter is desired, G(z) should be a stable real rational function • Digital filter design is the process of deriving the transfer function G(z)

87.1 Digital Filter Specifications Usually, either the magnitude and/or the phase (delay response is specified for the design of digital filter for most applications In some situations, the unit sample response or the step response may be specified In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification
§7.1 Digital Filter Specifications • Usually, either the magnitude and/or the phase (delay) response is specified for the design of digital filter for most applications • In some situations, the unit sample response or the step response may be specified • In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification

87.1 Digital Filter Specifications e. We discuss in this course only the magnitude approximation problem .. There are four basic types of ideal filters with magnitude responses as shown below (e) Hp(e) -oc0(c -Oc T HBP(e) 压s(e0) 丌-0c2-0c1 ocl (c2 7t 丌-0c2-oc1 oc1oc2π
§7.1 Digital Filter Specifications • We discuss in this course only the magnitude approximation problem • There are four basic types of ideal filters with magnitude responses as shown below

87.1 Digital Filter Specifications As the impulse response corresponding to each of these ideal filters is noncausal and of infinite length, these filters are not realizable ●· In practice, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances In addition a transition band is specified between the passband and stopband
§7.1 Digital Filter Specifications • As the impulse response corresponding to each of these ideal filters is noncausal and of infinite length, these filters are not realizable • In practice, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances • In addition, a transition band is specified between the passband and stopband

87.1 Digital Filter Specifications For example, the magnitude response G(ejo)l of a digital lowpass filter may be given as indicated below 1+6 Passband. Transiton
§7.1 Digital Filter Specifications • For example, the magnitude response |G(ej)| of a digital lowpass filter may be given as indicated below

87.1 Digital Filter Specifications .. As indicated in the figure, in the passband, defined by Usapp'vre require that g(eo)∈1 with an error±8n, 1.e ● 1-8sG(eo)≤1+8p,|o≤op · In the stopband, defined by a≤0≤,we require that G(ejo eo with an error 8 ie,G(e°)≤8,0,so≤π
§7.1 Digital Filter Specifications • As indicated in the figure, in the passband, defined by 0p , we require that |G(ej)|1 with an error p , i.e., 1- p |G(ej)| 1+ p , | | p • In the stopband, defined by s , we require that |G(ej)|0 with an error s i.e., |G(ej)| p , s ||

87.1 Digital Filter Specifications @n- passband edge frequency s- stopband edge frequency 8p- peak ripple value in the passband 8s-peak ripple value in the stopband Since g(ejo) is a periodic function of o, and G(ejo)l of a real-coefficient digital filter is an even function of o As a result, filter specifications are given only for the frequency range0so≤π
§7.1 Digital Filter Specifications • p - passband edge frequency • s - stopband edge frequency • p - peak ripple value in the passband • s - peak ripple value in the stopband • Since G(ej) is a periodic function of , and |G(ej)| of a real-coefficient digital filter is an even function of • As a result, filter specifications are given only for the frequency range 0 ||

=87.1 Digital Filter Specifications Specifications are often given in terms of loss function G(o)=-20log1o G(ejo)l in dB 。 Peak passband ripple 20log10(1-8p)dB \. Minimum stopband attenuation a、=-200g10(8、)dB
§7.1 Digital Filter Specifications • Specifications are often given in terms of loss function G()=-20log10 |G(ej)| in dB • Peak passband ripple p= -20log10 (1- p ) dB • Minimum stopband attenuation s= -20log10 (s ) dB

87.1 Digital Filter Specifications Magnitude specifications may alternately be given in a normalized form as indicated below passband Transiton band
§7.1 Digital Filter Specifications • Magnitude specifications may alternately be given in a normalized form as indicated below
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 6 Digital Filter Structures.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Digital Processing of Continuous-Time Signals.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 3 TransformDomain-Representation of Discrete-Time Signals.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第四章 模拟调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第十一章 同步原理.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第六章 正弦载波数字调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第八章 数字信号的最佳接收.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第五章 数字信号基带传输系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第二章 随机信号分析.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第九章 差错控制编码.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第三章 信道与噪声.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第七章 模拟信号的数字传输.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第一章 绪论.ppt
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.4-8.6).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.1-8.3).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第七章 离散时间系统的时域分析(7.4-7.5).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第七章 离散时间系统的时域分析(7.1-7.3).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第六章 连续时间系统的系统函数(6.5-6.7).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第六章 连续时间系统的系统函数(6.1-6.4).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第五章 连续时间系统的复频域分析(5.7-5.9).pdf
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Analysis of Finite Wordlength Effects.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 0 introduction.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 1 Continuous-time Signals and systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 2 discrete time signal and system.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Some key points.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验1.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验2.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验3.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验4.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验5.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验6.doc
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第一章 半导体管件.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第二章 基本放大电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第三章 多级放大电路和集成电路运算放大器.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第四章 放大电路的频率响应.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第五章 反馈.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第六章 集成电路运算放大器的线性运用.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第七章 波形发生电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第八章 功率放次电路.ppt