电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Some key points

Some key points Any arbitrary input sequence xn can be expressed as a linear combination of delaved and advanced unit sample sequences xn]=∑xk][n-k] 2..Linear Time-Invariant (LTD System A system satisfying both the linearity and the time-invariance property. If yiIn] is the output due to an input xin and yiN is the output due to an input x2lnl then for an input xn]=axiN+bx2InI the output is given b yIn]=ayiIn+by2InI Hence, the above system is linear Above property must hold for any arbitrary constants a and b and for all possible inputs xlIn and xiN. For a shift-invariant system, if yiIn is the response to an input x1Inl, then the response to an input xIn]=xiIn-nol is simply yIn]=yiln-nol where no is any positive or negative integer The above relation must hold for any arbitrary input and its corresponding output The above property is called time-invariance property, or shift-invariant proterty For example, Down-sampling x,n=xnM is time-variant 3. Convolution in time domain Ifa signalxIn] inputs to a system with the impulse response h[n], the output signal 4*小=∑m师n-m The main idea of the method is that an input signal is represented as( decomposed) the sum
Some key points 1. Any arbitrary input sequence x[n] can be expressed as a linear combination of delayed and advanced unit sample sequences 2. •Linear Time-Invariant (LTI) System A system satisfying both the linearity and the time-invariance property. •If y1[n] is the output due to an input x1[n] and y2[n] is the output due to an input x2[n] then for an input x[n]=ax1[n]+bx2[n] the output is given by y[n]=ay1[n]+by2[n] •Hence, the above system is linear . •Above property must hold for any arbitrary constants a and b and for all possible inputs x1[n] and x2[n]. •For a shift-invariant system, if y1[n] is the response to an input x1[n] , then the response to an input x[n]=x1[n-n0] is simply y[n]=y1[n-n0] where n0 is any positive or negative integer •The above relation must hold for any arbitrary input and its corresponding output •The above property is called time-invariance property, or shift-invariant proterty - For example, Down-sampling x [n] x[nM ] d = is time-variant 3.Convolution in time domain If a signal x[n] inputs to a system with the impulse response h[n] ,the output signal =− = = − m y[n] x[n] h[n] x[m]h[n m] The main idea of the method is that an input signal is represented as(decomposed) the sum = − k =− x[n] x[k][n k]

of basic signal: S[n], the response of LTI system is the synthesis of basic response hn 4. Discrete-Time Signals In the transform domain (1)From Ft TO DTFT and DFT ↑x(t) FI ↑x[nT XGo) DTFT q(t =2x/T :, Time domain Frequency domain Continue aperiodical fFT- Continue aperiodical Periodical ←FST→ discrete spectrum ←DTH→ periodical spectrun Discrete periodical +DFT+ periodical discrete The DTFT X(e w)of a sequence x n is a continuous function of o lt is also a periodic function of o with a period 2. DTFT is the Fourier Transform of discrete-time sequence. It is discrete in time domain and its spectrum is periodical (2)Relationships ZT and DTFT and DFT A finite-length sequence xin0≤n≤N-1, x[n]→X(=) xIn I
of basic signal: [n],the response of LTI system is the synthesis of basic response h[n] . 4. Discrete-Time Signals In the Transform Domain (1) From FT TO DTFT and DFT Time domain Frequency domain Continue aperiodical FT → Continue aperiodical Periodical FST → discrete spectrum Discrete DTFT → periodical spectrum Discrete periodical DFT → periodical discrete •The DTFT X(ejw) of a sequence x[n] is a continuous function of •It is also a periodic function of with a period 2DTFT is the Fourier Transform of discrete-time sequence. It is discrete in time domain and its spectrum is periodical. (2) Relationships ZT and DTFT and DFT A finite-length sequence x[n];0 n N −1, x[n] X (z) = − = − 1 0 ( ) [ ] N n n X z x n z . x(t) X(jω) P(jω) ω0 ω0=2π/Ts P(jω) ω0 ω0=2π/Ts x[nT] X(jω) q(t) T FT DFT DTFT Q(jω) Ω0 … … Ω0= 2π/T Q(jω) Ω0 … … Ω0= 2π/T Q(jω) Ω0 … … Ω0= 2π/T Q(jω) Ω0 … … Ω0= 2π/T Q(jω) Ω0 … … Ω0= 2π/T P(t) Ts … …

Xe)=∑xln/e -k when 2==k=e X(x)=∑xn=∑xnpw如= DFTIxn] That means: The ZT on the unit circle in Z-plane is the dtFtof x[n. The samples on the unit circle in Z-plane. X(E,), are the det of xn 5. The Concept of Filtering One application of an lti discrete-time system is to pass certain frequency components in an input sequence without any distortion(if possible)and to block other frequency components In another words, the sinusoidal components of the input, some of these components can be selectively heavily attenuated or filtered with respect to the others For example, a signal is inputted to a lowpass filter. If we change the frequency response of the filter, the output signal will be changed (as shown in following figure) A Lowpass 6. Analog Lowpass Filter Specifications passbandedge frequency: P stopband edge frequency: S Peak pa pp an=-20l0g0(-)B Minimum stopband attenuation: as=-20log1o(os)laB
= =− − n jω jnω X(e ) x[n]e when k N k N j z z k e W − = = = 2 , = = − = 1 − 0 2 ( ) [ ] N n kn N j k X z x n e [ ] [ [ ]] 1 0 x n W DFT x n N n kn N = − = That means: The ZT on the unit circle in Z-plane is the DTFT of x[n] . The samples on the unit circle in Z-plane, ( ) k X z ,are the DFT of x[n]. 5. The Concept of Filtering One application of an LTI discrete-time system is to pass certain frequency components in an input sequence without any distortion (if possible) and to block other frequency components。In another words,the sinusoidal components of the input, some of these components can be selectively heavily attenuated or filtered with respect to the others。 For example,a signal is inputted to a lowpass filter.If we change the frequency response of the filter,the output signal will be changed(as shown in following figure). A Lowpass Filter 6. Analog Lowpass Filter Specifications •passband edge frequency: P •stopband edge frequency: S •Peak passband ripple : 20log (1 )[ ] p = − 10 − p dB •Minimum stopband attenuation: 20log ( )[ ] S = − 10 s dB

Hava Vitek HQ Transitio
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 2 discrete time signal and system.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 1 Continuous-time Signals and systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 0 introduction.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Analysis of Finite Wordlength Effects.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Digital Filter Design.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 6 Digital Filter Structures.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Digital Processing of Continuous-Time Signals.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 3 TransformDomain-Representation of Discrete-Time Signals.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第四章 模拟调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第十一章 同步原理.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第六章 正弦载波数字调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第八章 数字信号的最佳接收.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第五章 数字信号基带传输系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第二章 随机信号分析.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第九章 差错控制编码.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第三章 信道与噪声.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第七章 模拟信号的数字传输.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第一章 绪论.ppt
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.4-8.6).pdf
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验1.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验2.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验3.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验4.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验5.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验6.doc
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第一章 半导体管件.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第二章 基本放大电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第三章 多级放大电路和集成电路运算放大器.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第四章 放大电路的频率响应.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第五章 反馈.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第六章 集成电路运算放大器的线性运用.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第七章 波形发生电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第八章 功率放次电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第九章 集成直流稳压电源.ppt
- 《数字电》英文版 chapter1-1 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1-2 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1-3 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1 Digital concept and Number system.ppt
- 《数字电》英文版 chapter2-1 Boolean switching algebra.ppt