电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 6 Digital Filter Structures

Chapter 6 e Digital Filter Structures
Chapter 6 Digital Filter Structures

86.1 Introduction The convolution sum description of an LTI discrete-time system can, in principle, be used to implement the system For an IIR finite-dimensional system this approach is not practical as here the impulse response is of infinite length However, a direct implementation of the IIR finite-dimensional system is practica
• The convolution sum description of an LTI discrete-time system can, in principle, be used to implement the system • For an IIR finite-dimensional system this approach is not practical as here the impulse response is of infinite length • However, a direct implementation of the IIR finite-dimensional system is practical §6.1 Introduction

86.1 Introduction Here the input-output relation involves a finite sum of products: yn]=-∑k=14kyn-+∑k20Pkxn- On the other hand, an FiR system can be implemented using the convolution sum e which is a finite sum of products y小]=∑0b1m-k1
• Here the input-output relation involves a finite sum of products: = = = − − + − M k k N k k y n d y n k p x n k 1 0 [ ] [ ] [ ] = = − N k y n h k x n k 0 [ ] [ ] [ ] §6.1 Introduction • On the other hand, an FIR system can be implemented using the convolution sum which is a finite sum of products:

86.1 Introduction The actual implementation of an LtI digital filter can be either in software or hardware form, depending on applications In either case, the signal varia bles and the filter coefficients cannot be represented with finite precision
• The actual implementation of an LTI digital filter can be either in software or hardware form, depending on applications • In either case, the signal variables and the filter coefficients cannot be represented with finite precision §6.1 Introduction

86.1 Introduction A structural representation using interconnected basic building blocks is the first step in the hardware or software implementation of an LTI digital filter The structural representation provides the key relations between some pertinent internal variables with the input and output that in turn provides the key to the implementation
• A structural representation using interconnected basic building blocks is the first step in the hardware or software implementation of an LTI digital filter • The structural representation provides the key relations between some pertinent internal variables with the input and output that in turn provides the key to the implementation §6.1 Introduction

§6,11 Block Diagram Representation In the time domain, the input-output relations of an lti digital filter is given by the convolution sum yn]=∑k=ohk]xn- or, by the linear constant coefficient difference equation y[n]=-ckerdkyvIn-k]+ 2ko pk[n-ki
§6.1.1 Block Diagram Representation • In the time domain, the input-output relations of an LTI digital filter is given by the convolution sum =− = − k y[n] h[k]x[n k] = = = − − + − M k k N k k y n d y n k p x n k 1 0 [ ] [ ] [ ] or, by the linear constant coefficient difference equation

§6,11 Block Diagram Representation For the implementation of an lti digital filter, the input-output relationship must be described by a valid computational algorithm To illustrate what we mean by a computational algorithm, consider the causal first-order lti digital filter shown below
§6.1.1 Block Diagram Representation • For the implementation of an LTI digital filter, the input-output relationship must be described by a valid computational algorithm • To illustrate what we mean by a computational algorithm, consider the causal first-order LTI digital filter shown below

§6,11 Block Diagram Representation The filter is described by the difference equation yIn]=-diyIn-1+poxIn+pixn-11 Using the above equation we can compute yIn for n20 knowing the initial condition yln-l and the input x[n for n≥-1
§6.1.1 Block Diagram Representation • The filter is described by the difference equation y[n]=-d1y[n-1]+p0x[n]+p1x[n-1] • Using the above equation we can compute y[n] for n0 knowing the initial condition y[n-1] and the input x[n] for n -1

§6,11 Block Diagram Representation y|0=-d1y{-1]+ poX+px -1 y[1=d1y|0|+p0X1+p1x[0 y[2]=-d1y[1]+poX[2]+p1x[1 We can continue this calculation for any value of the time index n we desire
§6.1.1 Block Diagram Representation y[0]=-d1y[-1]+p0x[0]+p1x[-1] y[1]=-d1y[0]+p0x[1]+p1x[0] y[2]=-d1y[1]+p0x[2]+p1x[1] .… • We can continue this calculation for any value of the time index n we desire

§6,11 Block Diagram Representation Each step of the calculation requires a knowledge of the previously calculated value of the output sample(delayed value of the output), the present value of the input sample, and the previous value of the input sample (delayed value of the input) As a result, the first-order difference equation can be interpreted as a valid computational algorithm
§6.1.1 Block Diagram Representation • Each step of the calculation requires a knowledge of the previously calculated value of the output sample (delayed value of the output), the present value of the input sample, and the previous value of the input sample (delayed value of the input) • As a result, the first-order difference equation can be interpreted as a valid computational algorithm
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Digital Processing of Continuous-Time Signals.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 3 TransformDomain-Representation of Discrete-Time Signals.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第四章 模拟调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第十一章 同步原理.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第六章 正弦载波数字调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第八章 数字信号的最佳接收.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第五章 数字信号基带传输系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第二章 随机信号分析.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第九章 差错控制编码.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第三章 信道与噪声.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第七章 模拟信号的数字传输.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第一章 绪论.ppt
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.4-8.6).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.1-8.3).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第七章 离散时间系统的时域分析(7.4-7.5).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第七章 离散时间系统的时域分析(7.1-7.3).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第六章 连续时间系统的系统函数(6.5-6.7).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第六章 连续时间系统的系统函数(6.1-6.4).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第五章 连续时间系统的复频域分析(5.7-5.9).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第五章 连续时间系统的复频域分析(5.10-5.11).pdf
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Digital Filter Design.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Analysis of Finite Wordlength Effects.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 0 introduction.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 1 Continuous-time Signals and systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 2 discrete time signal and system.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Some key points.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验1.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验2.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验3.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验4.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验5.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验6.doc
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第一章 半导体管件.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第二章 基本放大电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第三章 多级放大电路和集成电路运算放大器.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第四章 放大电路的频率响应.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第五章 反馈.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第六章 集成电路运算放大器的线性运用.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第七章 波形发生电路.ppt