电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems

Chapter 4 F Frequency-domain Representation of LTI e Discrete-Time Systems
Chapter 4 Frequency-domain Representation of LTI Discrete-Time Systems

84.1 LTI Discrete-Time Systems in the Transform domain Such transform-domain representations provide additional insight into the behavior of such systems It is easier to design and implement these systems in the transform-domain for certain applications 一· We consider now the use of the dtft and the z-transform in developing the transform domain representations of an Lti system
§4.1 LTI Discrete-Time Systems in the Transform Domain • Such transform-domain representations provide additional insight into the behavior of such systems • It is easier to design and implement these systems in the transform-domain for certain applications • We consider now the use of the DTFT and the z-transform in developing the transformdomain representations of an LTI system

84.1 LTI Discrete-Time Systems in the Transform domain In this course we shall be concerned with lti discrete-time systems characterized by linear constant coefficient difference equations of the form: ∑dky{n-k]=∑pkxn-k] k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • In this course we shall be concerned with LTI discrete-time systems characterized by linear constant coefficient difference equations of the form: = = − = − M k k N k k d y n k p x n k 0 0 [ ] [ ]

84.1 LTI Discrete-Time Systems in the Transform domain a. Applying the dtft to the diffe erence equation and making use of the linearity and the time invariance properties we arrive at the input- output relation in the transform-domain as k ≌ evoke(eo k Pk Y(e1) k=0 e where Y(eo)and x(eo) are the dfts of yin and x n, respectively
§4.1 LTI Discrete-Time Systems in the Transform Domain • Applying the DTFT to the difference equation and making use of the linearity and the timeinvariance properties we arrive at the inputoutput relation in the transform-domain as ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e where Y(ej) and X(ej) are the DTFTs of y[n] and x[n], respectively

84.1 LTI Discrete-Time Systems in the Transform domain In developing the transform-domain representation of the difference equation, it has been tacitly assumed that X( Jo) and Y(ejo ) exist The previous equation can be alternately written as k e k y(e0)=∑pk e Jok X(e/) k=0 k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • In developing the transform-domain representation of the difference equation, it has been tacitly assumed that X(ej) and Y(ej) exist • The previous equation can be alternately written as ( ) ( ) 0 0 = − = − = j M k j k k j N k j k k d e Y e p e X e

84.1 LTI Discrete-Time Systems in the Transform domain difference equation and making use or the e Applying the z-transform to both sides of the linearity and the time-invariance properties we arrive at ∑dkz-(z)=∑ PkE X() k=0 k=0 where y(z and x(z denote the z-transforms of yIn and xn with associated ROCs, respectively
§4.1 LTI Discrete-Time Systems in the Transform Domain • Applying the z-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties we arrive at d z Y(z) p z X(z) M k k k N k k k = − = − = 0 0 where Y(z) and X(z) denote the z-transforms of y[n] and x[n] with associated ROCs, respectively

84.1 LTI Discrete-Time Systems in the Transform domain A more convenient form of the z-domain representation of the difiference equation is given by ∑4k=-k|y(=)=∑pk=-kX() k=0 k=0
§4.1 LTI Discrete-Time Systems in the Transform Domain • A more convenient form of the z-domain representation of the difference equation is given by d z Y(z) p z X(z) M k k k N k k k = = − = − 0 0

§4.2 The Frequency Response Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, maybe infinite number of sinusoidal discrete time signals of dififerent angular frequencies Thus, knowing the response of the lti system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property
§4.2 The Frequency Response • Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, maybe infinite, number of sinusoidal discretetime signals of different angular frequencies • Thus, knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property

§4.2 The Frequency Response The quantity H(ejo) is called the frequency response of the lti discrete time system H(ejo) provides a frequency-domain description of the system H(ejo) is precisely the dtft of the impulse response hn of the system
§4.2 The Frequency Response • The quantity H(ej) is called the frequency response of the LTI discretetime system • H(ej) provides a frequency-domain description of the system • H(ej) is precisely the DTFT of the impulse response {h[n]} of the system

§4.2 The Frequency Response H(eJo), in general, is a complex function of o with a period2兀 It can be expressed in terms of its real and imaginary parts H(ejo)=hre(ejo)+j Him(ejo) or, in terms of its magnitude and phase, H(ejo)=H(ejo )l ee(@) where B(o=argH(eJo)
§4.2 The Frequency Response • H(ej), in general, is a complex function of with a period 2p • It can be expressed in terms of its real and imaginary parts H(ej)= Hre(ej) +j Him(ej) or, in terms of its magnitude and phase, H(ej)=|H(ej)| e() where ()=argH(ej)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 2 discrete time signal and system.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 1 Continuous-time Signals and systems.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 0 introduction.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 9 Analysis of Finite Wordlength Effects.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 7 Digital Filter Design.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 6 Digital Filter Structures.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 5 Digital Processing of Continuous-Time Signals.ppt
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Chapter 3 TransformDomain-Representation of Discrete-Time Signals.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第四章 模拟调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第十一章 同步原理.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第六章 正弦载波数字调制系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第八章 数字信号的最佳接收.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第五章 数字信号基带传输系统.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第二章 随机信号分析.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第九章 差错控制编码.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第三章 信道与噪声.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第七章 模拟信号的数字传输.ppt
- 燕山大学信息科学与工程学院:《通信原理》 第一章 绪论.ppt
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.4-8.6).pdf
- 东南大学:《信号与线性系统》课程教学资源(课件讲稿,第四版)第八章 离散系统的z域分析(8.1-8.3).pdf
- 电子科技大学:《数字信号处理》课程教学资源(PPT课件讲稿,英文版)Some key points.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验1.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验2.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验3.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验4.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验5.doc
- 电子科技大学:《数字信号处理》课程教学资源(试题及实验指导)实验6.doc
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第一章 半导体管件.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第二章 基本放大电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第三章 多级放大电路和集成电路运算放大器.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第四章 放大电路的频率响应.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第五章 反馈.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第六章 集成电路运算放大器的线性运用.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第七章 波形发生电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第八章 功率放次电路.ppt
- 《模拟电子技术》课程教学资源(PPT课件讲稿)第九章 集成直流稳压电源.ppt
- 《数字电》英文版 chapter1-1 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1-2 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1-3 Digital concept and Number system.ppt
- 《数字电》英文版 chapter1 Digital concept and Number system.ppt