中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)03 Mesh Smoothing

Mesh Smoothing Xiao-Ming Fu
Mesh Smoothing Xiao-Ming Fu

Denoising Removing the noise (the high frequencies)and keeping the overall shape (the low frequencies) Physical scanning process 。Feature VS Noise
Denoising • Removing the noise (the high frequencies) and keeping the overall shape (the low frequencies) • Physical scanning process • Feature VS Noise

Smoothing From wiki In statistics and image processing,to smooth a data set is to create an approximating function that attempts to capture important patterns in the data,while leaving out noise or other fine-scale structures/rapid phenomena. In smoothing,the data points of a signal are modified so individual points (presumably because of noise)are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal
Smoothing – From wiki • In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. • In smoothing, the data points of a signal are modified so individual points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal

Outline Filter-based methods Optimization-based methods 。Data-driven methods
Outline • Filter-based methods • Optimization-based methods • Data-driven methods

Outline Filter-based methods Optimization-based methods 。Data-driven methods
Outline • Filter-based methods • Optimization-based methods • Data-driven methods

Laplacian smoothing Diffusion flow:a mathematically well-understood model for the time- dependent process of smoothing a given signal f(x,t). Heat diffusion,Brownian motion 。Diffusion equation: afx,边=a△fx,t Ot 1.A second-order linear partial differential equation; 2.Smooth an arbitrary function f on a manifold surface by using Laplace-Beltrami Operator. 3. Discretize the equation both in space and time
Laplacian smoothing • Diffusion flow: a mathematically well-understood model for the timedependent process of smoothing a given signal 𝑓(𝒙,𝑡). • Heat diffusion, Brownian motion • Diffusion equation: 𝜕𝑓 𝒙,𝑡 𝜕𝑡 = 𝜆∆𝑓(𝒙,𝑡) 1. A second-order linear partial differential equation; 2. Smooth an arbitrary function 𝑓 on a manifold surface by using Laplace-Beltrami Operator. 3. Discretize the equation both in space and time

Spatial discretization Sample values at the mesh vertices f(t)=(f(v1,t),...,f(vn,t))T Discrete Laplace-Beltrami using either the uniform or cotangent formula. The evolution of the function value of each vertex: of(vi, Ot 2=△f(x,t) Matrix form: of(t) at =入·Lf(t)
Spatial discretization • Sample values at the mesh vertices 𝒇(𝑡) = 𝑓 𝑣1,𝑡 , … , 𝑓 𝑣𝑛,𝑡 𝑇 • Discrete Laplace-Beltrami using either the uniform or cotangent formula. • The evolution of the function value of each vertex: 𝜕𝑓 𝑣𝑖 ,𝑡 𝜕𝑡 = 𝜆∆𝑓(𝒙𝑖 ,𝑡) Matrix form: 𝜕𝒇 𝑡 𝜕𝑡 = 𝜆 ∙ 𝐿𝒇(𝑡)

Temporal discretization Uniform sampling:(t,t h,t 2h,... Explicit Euler integration: f化+=fO+hf@=f0+haf阳 at 1.Numerically stability:a sufficiently small time step h. Implicit Euler integration: f(t+h)=f(t)+hλ·Lf(t+h) →(I-hn·L)f(t+h)=f(t)
Temporal discretization • Uniform sampling: (𝑡,𝑡 + ℎ,𝑡 + 2ℎ, … ) • Explicit Euler integration: 𝒇 𝑡 + ℎ = 𝒇 𝑡 + ℎ 𝜕𝒇 𝑡 𝜕𝑡 = 𝒇 𝑡 + ℎ𝜆 ∙ 𝐿𝒇(𝑡) 1. Numerically stability: a sufficiently small time step ℎ. • Implicit Euler integration: 𝒇 𝑡 + ℎ = 𝒇 𝑡 + ℎ𝜆 ∙ 𝐿𝒇(𝑡 + ℎ) ⟺ 𝑰 − ℎ𝜆 ∙ 𝐿 𝒇 𝑡 + ℎ = 𝒇 𝑡

Laplacian smoothing ·Arbitrary function→vertex positions ·f→(x1,,xn)T Laplacian smoothing: xi←-xi+hM·△xi 1.Ax =-2Hn vertices move along the normal direction by an amount determined by the mean curvature H. 2. mean curvature flow
Laplacian smoothing • Arbitrary function ⟹ vertex positions • 𝒇 ⟹ 𝒙𝟏, … , 𝒙𝒏 𝑻 • Laplacian smoothing: 𝒙𝑖 ⟵ 𝒙𝑖 + ℎ𝜆 ∙ ∆𝒙𝑖 1. ∆𝒙 = −2𝐻𝒏 ⟶ vertices move along the normal direction by an amount determined by the mean curvature 𝐻. 2. mean curvature flow

Figure 4.5.Curvature flow smoothing of the bunny mesh (left),showing the result after ten iterations (center)and 100 iterations (right).The color coding shows the mean curvature.(Model courtesy of the Stanford Computer Graphics Laboratory.)
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)02 Discrete differential geometry.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)01 Representation.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)积分公式——方向导数专题.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的傅里叶变换对.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)利用变量代换转化为勒让德方程并求解.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)勒让德多项式的递推公式.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)捕捉分离变量法温柔气息.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)非齐次问题处理方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)探寻分离变量法心底的迷——疑难点阶段性总结.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)关于分离变量法使用条件的探讨.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)定解问题书写原则和方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的物理学公式定律.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)二阶线性常系数微分方程求解——特征根法,你到底,你到底是谁.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程经典问题专题整理——函数变换法的应用.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习参考手册.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习指导(授课老师:高源).pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)积分 Intergration.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数应用 The Derivatives in Graphing and Application.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数 The Derivatives.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)极限 Limits & Continuity.ppt
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)04 Mesh Parameterizations.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第九章 函数逼近.pdf
- 中国科学技术大学:《计算方法》课程教学资源(补充材料)第三章 函数逼近与曲线拟合.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第八章 常微分方程数值解.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第一章 插值(主讲:傅孝明).pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第三章 数值微分和数值积分.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第十章 最优化方法.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第二章 最小二乘拟合.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第零章 绪论(主讲:傅孝明).pdf
- 中国科学技术大学:《计算方法》课程教学资源(补充材料)绪论补充证明.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第四章 解线性方程组的直接法.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第五章 解线性方程组的迭代法.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第七章 计算矩阵的特征值与特征向量.pdf
- 中国科学技术大学:《数值计算方法与算法》教材教学用书(考研指定参考书,第三版,共八章).pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)数值计算方法课程扩充教程(第九章 函数逼近、第十章 最优化方法).pdf
- 中国科学技术大学:《计算方法》课程教学资源(补充材料)迭代法收敛性补充证明.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第三章 非线性方程求根.pdf
- 上饶师范学院:《高等代数》课程教学资源(电子教案)高等代数电子教案(共六章).doc
- 上饶师范学院:《高等代数》课程教学资源(电子教案)第三章 线性方程组.doc
- 上饶师范学院:《高等代数》课程教学资源(电子教案)第二章 行列式.doc