同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数应用 The Derivatives in Graphing and Application

Chapter Four The Derivatives in Graphing and Application
Chapter Four The Derivatives in Graphing and Application

Increase Decrease Definition Let fbe defined on an interval,and let x1 and x,denote points in the interval. ofis increase on the interval if f(x1)f(x2) wheneverx1<x2 o fis constant on the interval if f(x)=f(x2)for all points x1,x2
Increase & Decrease ⚫Definition Let f be defined on an interval, and let x1 and x2 denote points in the interval. f is increase on the interval if f (x1 ) f (x2 ) whenever x1 < x2 f is constant on the interval if f (x1 )= f (x2 ) for all points x1 , x2

Increase Decrease ●Theorem Let fbe a function that is continuous on a closed interval [a,b]and differentiable on the open interval (a,b) O If f(x)>0,for all x in (a,b)=>fis increase on [a,b] O If f'(x)fis decrease on [a,b] O If f'(x)=0,for all x in (a,b)=>fis constant on [a,b]
Increase & Decrease - ⚫Theorem Let f be a function that is continuous on a closed interval [a,b] and differentiable on the open interval (a,b) If f ’(x)>0, for all x in (a,b) => f is increase on [a,b] If f ’(x) f is decrease on [a,b] If f ’(x)=0, for all x in (a,b) => f is constant on [a,b]

Concavity ●Definition O If fis differentiable on an open interval I,then f is said to be concave up on Tif f'is increasing on o fis said to be concave down on Iif f'is decreasing on I
Concavity ⚫Definition If f is differentiable on an open interval I, then f is said to be concave up on I if f ’ is increasing on I f is said to be concave down on I if f ’ is decreasing on I

Concavity ●Theorem O If f"(x)>0 for all value of x in I,then fis concave up on 2 O If f"(x)<0 for all value of x in I,then fis concave down on 2
Concavity - ⚫Theorem If f ’’(x)>0 for all value of x in I, then f is concave up on I If f ’’(x)<0 for all value of x in I, then f is concave down on I

Inflection Points o Definition If fis continuous on an open interval containing a value xo and if fchange the direction of concavity at the point (xo f(x)), then we say that fhas an inflection point at xo and we call the point (xo,f())on the graph of fan inflection point of f
Inflection Points ⚫Definition If f is continuous on an open interval containing a value x0 and if f change the direction of concavity at the point (x0 , f (x0 ) ), then we say that f has an inflection point at x0 and we call the point (x0 , f (x0 ) ) on the graph of f an inflection point of f

Relative Extrema Definition OA function fis said to have a relative maximum at xo if there is an open interval containing xo on which fo)is the largest value,i.e.fxo)x)for all x in the interval OA function f is said to have a relative minimum at xo if there is an open interval containing xo on which f(xo)is the smallest value,i.e.fxo)x)for all x in the interval
Relative Extrema ⚫Definition A function f is said to have a relative maximum at x0 if there is an open interval containing x0 on which f(x0 ) is the largest value, i.e. f(x0 )≥f(x) for all x in the interval A function f is said to have a relative minimum at x0 if there is an open interval containing x0 on which f(x0 ) is the smallest value, i.e. f(x0 )≤f(x) for all x in the interval

Relative Extrema O Theorem Suppose that fis a function defined on an open interval containing the point xo.If f has a relative extreme atx=xo,then x=xo is a critical point of f;that is,either f'(x)=0 or fis not differentiable at xo
Relative Extrema - ⚫Theorem Suppose that f is a function defined on an open interval containing the point x0 . If f has a relative extreme at x = x0 , then x= x0 is a critical point of f ; that is , either f ’(x0 )=0 or f is not differentiable at x0

First Derivative Test ●Theorem Suppose that fis continuous at a critical point xo O If f'(x)>0 on an open interval extending left from xo and f'(x)0 on an open interval extending right from xo,then f has a relative minimum at xo OIf f'(x)has the same sign on an open interval extending left from xo as it does on an open interval extending right from xo, then fdoes not have a relative extreme at xo
First Derivative Test ⚫ Theorem Suppose that f is continuous at a critical point x0 If f ’(x) >0 on an open interval extending left from x0 and f ’(x)0 on an open interval extending right from x0 , then f has a relative minimum at x0 If f ’(x) has the same sign on an open interval extending left from x0 as it does on an open interval extending right from x0 , then f does not have a relative extreme at x0

Second Derivative Test ●Theorem Suppose that fis twice differentiable at the point xo OIf f'(xo)=0 and f"(xo)>0,then f has a relative minimum at xo Olf f(x)=0 and f"(xo)<0,then f has a relative maximum at xo O If f'(xo)=0 and f"(xo)=0,then the test is inconclusive
Second Derivative Test ⚫Theorem Suppose that f is twice differentiable at the point x0 If f ’(x0 )=0 and f ’’(x0 )>0, then f has a relative minimum at x0 If f ’(x0 )=0 and f ’’(x0 )<0, then f has a relative maximum at x0 If f ’(x0 )=0 and f ’’(x0 )=0, then the test is inconclusive
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数 The Derivatives.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)极限 Limits & Continuity.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)函数.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题样本.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题集 Calculus Exercise.pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,答案).pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,试卷).pdf
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第四章 微分方程题库.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第二章 导数与微分.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第三章 积分及其应用.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第一章 函数与极限.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第八章 重积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第九章 曲线积分与曲面积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第七章 多元函数微分学.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)空间解析几何题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)无穷级数1.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)微分方程1.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第9章 多元函数微分学及其应用.docx
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第8章 无穷级数.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第7章 微分方程.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)积分 Intergration.ppt
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习指导(授课老师:高源).pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习参考手册.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程经典问题专题整理——函数变换法的应用.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)二阶线性常系数微分方程求解——特征根法,你到底,你到底是谁.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的物理学公式定律.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)定解问题书写原则和方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)关于分离变量法使用条件的探讨.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)探寻分离变量法心底的迷——疑难点阶段性总结.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)非齐次问题处理方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)捕捉分离变量法温柔气息.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)勒让德多项式的递推公式.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)利用变量代换转化为勒让德方程并求解.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的傅里叶变换对.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)积分公式——方向导数专题.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)01 Representation.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)02 Discrete differential geometry.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)03 Mesh Smoothing.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)04 Mesh Parameterizations.pdf
- 中国科学技术大学:《计算方法》课程教学资源(课件讲稿)第九章 函数逼近.pdf