同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题集 Calculus Exercise

Calculus Exercise Chapter 1 Function 1.Are they functions in the following graphs? rz☑ 4p→. 2.Are they functions in the following tables? d x111 x123 x111 )i23 111 x)11I e x123 x223 x123 x)456 x)111 )121o2
Calculus Exercise Chapter 1 Function 1. Are they functions in the following graphs? a) b) c) d) e) f) g) h) i) j) k) 2. Are they functions in the following tables? a) b) c) d) e) f) 0 20 40 60 80 100 1st season 2nd season 3rd season 4th season x 1 1 1 f(x) 1 2 3 x 1 2 3 f(x) 1 1 1 x 1 1 1 f(x) 1 1 1 x 1 2 3 f(x) 4 5 6 x 2 2 3 f(x) 1 1 1 x 1 2 3 f(x) 1 2 1or2

3.Are they functions in the following formulas? a)f(x)=sinx;b)f(x)=0. of()=f xo -x,otherwise; d f()=2 Ux=1 -2,fx=-l e)f(x)=y,where y satisfiesx2+y2=1; 「sinx,ifx0. h)f(x)=cosl; i)fx)=g2(x),where g(x)=tanx,in(-π/2,π/2: Dr++4-2in0+啡为=sire)in(m以 sin(e*) 3.ifx1. sr=me sine*-vx2+3x+I,ifx2+3x+1z0 =F不,刂-高-@gw wf)=log(sinx-ly为fx)=--可+1 4 y)f(x)=1+x+++x,where N is a positive integer; z)f(x)=1+sinx+sin 2x+..+sin Nx,where N is a positive integer; 4.Are they functions in the following sentences? a)f(n)denotes the average temperature in degree of the days since 01/12/2013; b)f(n)is denoted as the number of the students of the class n;
3. Are they functions in the following formulas? a) f x x ( ) sin ; b) f x( ) 0; c) , 0, ( ) , ; x if x f x x otherwise d) 2, 1, ( ) 2, 1; if x f x if x e) 2 2 f x y y x y ( ) , where satisfies 1; f) 1/ ( ) , (0, ); x f x e x g) sin , 0, ( ) 1, 0, , 0; x if x f x if x x if x h) 2, 0, ( ) 0, 0; if x f x if x h) f x( ) cos1; i) 2 f x g x g x x ( ) ( ), where ( ) tan , in ( / 2, / 2); j) 2 sin( ) ( ) , in (0, ); 4 2 x e f x x x k) 2 cos ( ) sin( ), in ( , ); x x e f x e l) 3, if 0, ( ) sin( ( )), where ( ) ; 3, if 0 x f x h x h x x m) f x e ( ) ; n) 1, if 1, ( ) 2, if 2; x f x x o) 2 2 1, if 1, ( ) 2, if 1, x f x x p) 1, if 1, ( ) 2, if 2; x f x x q) log cos , if cos 0, ( ) 1 cos , if cos 0; x x f x x x r) 2 2 2 2 sin 3 1, if 3 1 0, ( ) 1 log | | , if 3 1 0; 1 x e x x x x f x x x x x s) 2 f x x ( ) 1; t) 1 ( ) cos f x x u) f x x ( ) loglog ; v) f x x x ( ) sin w) f x x ( ) log(sin 1); x) 4 3 2 1 4 ( ) 1 ; 1 3 2 1 f x x x x x y) 2 ( ) 1 ... ,where is a positive integer; N f x x x x N z) f x x x Nx N ( ) 1 sin sin 2 ... sin ,where is a positive in teger; 4. Are they functions in the following sentences? a) f(n) denotes the average temperature in degree of the days since 01/12/2013; b) f(n) is denoted as the number of the students of the class n;

c)f(n)is denoted as the number of the students under 17 ages of the class n. d)f(n)is denoted as the number of positive results in n tests; gaBaaieashgpoIyPceoheoCkaaheomoommaTteB g)f(n)is denoted as the expected number of the good medals of the country n in the next Olympic Games. 5.Find the domains of the following functions: a)f(x)=0.b)f(x)=sinx;c)f(x)=2x2-x+3 d)f(x)=e+c0. )(log(1): 1 0-2-+2nf国=(可w2-- 1 f(x)=sin(log(x));m)f(x)=log(cosx)n)f(x)=-e' o=-cs/-画,g倒=e阿 r)f(x)=Vx2-3x+1:s)f(x)= =, V Ixl -1,ifx-l, cosx,if-31 v)f(x)=log(g(x)),where g(x)=0,if x=1. -1,ifx<l x123 x)321 6.Find the ranges of the following functions: a)fx)=上b)fx)=sinx3;dfx)=xe2;d)fx)=em
c) f(n) is denoted as the number of the students under 17 ages of the class n. d) f(n) is denoted as the number of positive results in n tests ; e) f(n) is denoted as the highest velocity of the car in type n; f) f(n) is denoted as the possibility price of the stock n in the tomorrow market; g) f(n) is denoted as the expected number of the good medals of the country n in the next Olympic Games. 5. Find the domains of the following functions: a) f x( ) 0; b) f x x ( ) sin ; c) 2 f x x x ( ) 2 3; d) 2 cos ( ) ; x x f x e e) 2 f x x ( ) log 1 ; f) 2 1 ( ) ; 3 1 f x x x g) 1 ( ) ; 1 x f x x h) 1 f x( ) ; x i) 2 1 ( ) ; 3 2 f x x x j) f x x x ( ) sin 1 ; k) 3 1 ( ) 3 ; 2 1 f x x x l) f x x ( ) sin log( ) ; m) f x x ( ) log(cos ) n) ( ) 1 ; x f x e o) 1 ( ) ; 1 cos f x x p) f x x ( ) tan ; q) 2 1 ( ) ; x f x e r) 2 f x x x ( ) 3 1; s) | 1| ( ) ; | | x f x x t) 2 2 1, if 2, ( ) 1, if 1; x f x x u) sin , if 1 2, ( ) cos , if -3< 0; x x f x x x v) 1, if 1, ( ) , otherwise; x x f x x w) ( ) , if sin 1; x f x e x x) , if 2 1 0, ( ) log , otherwise; x e x f x x y) 1, 1, ( ) log , where ( ) 0, 1, 1, 1. if x f x g x g x if x if x z) 6. Find the ranges of the following functions: a) f x( ) 1; b) 3 f x x ( ) sin ; c) 2 ( ) ; x f x xe d) 2 1 ( ) ; x f x e x 1 2 3 f(x) 3 2 1

=骨点N=F i)f(x)=xx2-1;i)f(x)=/cosx;k)f(x)=log(x+1);1)f(x)=tan 1f=闭=7o))=m2x+ s)f(x)=sece";t)f(x)=e;u)f(x)=logsinx+v)f(x)=e 1,ifx>0, w)f(x)=0,ifx=0,x)f(x)= +2x-1,ix2l0f)= x2+1,ifx=1, -1,ifx<0; e",otherwise; cosx,otherwise. x123 )321 7.Find the domains and ranges of the following functions by graph: b) 8.Indicate if the following functions are invertible or invertible after restrict the domains,if so find their inverse functions and their restricted domains if any: a)f(x)=0,b)f(x)=x,c)f(x)=x;d)f(x)=x+1;e)f(x)=2x-3, f)f(x)=/x+I;g)f(x)=x2-1;h)f(x)=x+x+1;i)f(x)=x;
e) sin ( ) ;x f x e f) 1 ( ) ; 1 x f x x g) 1 1 ( ) ; x x f x e h) 2 f x x ( ) 2; i) 2 f x x x ( ) 1; j) f x x ( ) cos ; k) f x x ( ) log( 1); l) f x x ( ) tan ; m) sin ( ) ; 1 x x f x e n) 1 ( ) ; 1 x x e f x e o) 2 f x x ( ) sin 1; p) 2 1 ( ) ; 1 f x x q) 1 ( ) ; cos 1 f x x r) 2 3 f x x x ( ) sin sin ; s) ( ) sec ; x f x e t) 2 cos ( ) ; x f x e u) f x x ( ) logsin 1; v) log ( ) ; x f x e w) 1, if 0, ( ) 0, if 0, 1, if 0; x f x x x x) 3 2 1, if 1, ( ) , otherwise; x x x x f x e y) 2 1, if 1, ( ) cos , otherwise. x x f x x z) 7. Find the domains and ranges of the following functions by graph: a) b) 1 0 1 8. Indicate if the following functions are invertible or invertible after restrict the domains, if so find their inverse functions and their restricted domains if any: a) f x( ) 0; b) f x x ( ) ; c) 3 f x x ( ) ; d) f x x ( ) 1; e) f x x ( ) 2 3; f) f x x ( ) 1; g) 2 f x x ( ) 1; h) 2 f x x x ( ) 1; i) 2 f x x ( ) 1 ; x 1 2 3 f(x) 3 2 1 1 0 1

)fx)=e+上kf(x)= F-3x+20f)=e:mf)=e2-+2 1 n)f(x)=e+2e*+l;o)f(x)=sine'-1;q)f(x)=esinx-; x,ifx≥0, f(x)x-1川+l)f(x)= 2,ix<0wf)=m≥0 -1,if x<0. sinx,ifx≥0, 1,if x21, x刘f(x)= tans.ifx<()if -l,ifx≤-l. x123 )456 9.Draw the inverse functions of the following functions from their graphs: 10.Value of the following functions: a)f(x)=sinx,thenf(0)= b)f(x)=2x2-1;thenf①= c)f(x)=cosx+e;thenf(z/2)=d)f(x)=x2-logx,thenf(1)= 。f)- ;thenf(π)= f)f(x)=xx+2;thenf(2)= g)f(x)=ve*+1;thenf(0)= h)f(x)=log(x2)thenf(ve)= i)f(1)=2,g(2)=3,theng(f(1))= k)f⑩=2,g(2)=2,theng(g(2)=
j) ( ) 1; x f x e k) 2 1 ( ) ; 3 2 f x x x l) 1 ( ) ; x f x e m) 2 1 ( ) 2; x f x e n) 2 ( ) 2 1; x x f x e e o) 3 ( ) sin 1; x f x e q) sin 1 ( ) ; x f x e r) ( ) log(1 cos ); x f x e s) 1 ( ) ; 1 x x e f x e t) f x x ( ) loglog( 1); u) f x x ( ) | 1| 1; v) 3 , if 0, ( ) , if 0. x x f x x x w) 1, if 0, ( ) 1, if 0. x f x x x) sin , if 0, ( ) tan , if 0. x x f x x x y) 1, if 1, ( ) , if -1< 1, 1, if 1. x f x x x x z) 9. Draw the inverse functions of the following functions from their graphs: a) b) 1 0 1 10. Value of the following functions: a) f x x f ( ) sin ; then (0) b) 2 f x x f ( ) 2 1; then (1) c) ( ) cos ; then ( / 2) x f x x e f d) 2 f x x x f ( ) log ; then (1) e) sin ( ) ; then ( ) 1 x f x f x f) f x x x f ( ) 2; then (2) g) ( ) 1; then (0) x f x e f h) 2 f x x f e ( ) log( ); then ( ) i) f g f (1) 2, g(2) 3, then ( (1)) k) f g g (1) 2, g(2) 2, then ( (2)) x 1 2 3 f(x) 4 5 6 1 0 1

11.Answer the following questions: a)Iff(x)is invertible,is f(x)+a invertible,where ais any constant? b)If f(x)and g(x)are invertible,is f(x)+g(x)invertible? c)Are the following functions defined in tables even or odd functions? x-101 x-10.51 x-101 )121 gx)202 h)30-3 d)If f(g(x))=g(f(x))=x what the relationship of f(x)and g(x)? e)ffg(x》=gfx》=fx),what is g(x)? f)Is f(g(x))=g(f(x))correct? g)If f(x).g(x)are invertible,is f(g(x))=gf(x))correct? h)If f(2)=3.g(3)=2,is f(g(3))=g(f(3))correct? i)If f(2)=3,g(3)=2,are f(g(3))=3,g(f(2))=2 correct? )Function is defined.is the domain of this function is -1,x<0 (-,+0)2 k)Does the range of above function equal to [-1,+1]? (is defined.Is the domain of this function is 1)Function f(x)h(x). (-0,+o)2 m)Does the domain of above function equal to DDwhere D,denotes the domain of f(x)? n)Does the range of above function equal toR,where R denotes the range of f(x)?
11. Answer the following questions: a) If f x( ) is invertible,is f x a ( ) invertible, where a is any constant? b) If f x( ) and g x( ) are invertible,is f x g x ( ) ( ) invertible? c) Are the following functions defined in tables even or odd functions? d) If f g x g f x x ( ( )) ( ( )) what the relationship of f x( ) and g x( ) ? e) If f g x g f x f x ( ( )) ( ( )) ( ) , what is g x( ) ? f) Is f g x g f x ( ( )) ( ( )) correct? g) If f x g x ( ), ( ) are invertible, is 1 1 f g x g f x ( ( )) ( ( )) correct? h) If f g (2) 3, (3) 2 , is f g g f ( (3)) ( (3)) correct? i) If f g (2) 3, (3) 2 , are f g g f ( (3)) 3, ( (2)) 2 correct? j) Function 1, 0, ( ) 1, 0 x f x x is defined. Is the domain of this function is ( , )? k) Does the range of above function equal to [-1,+1]? l) Function ( ), 0, ( ) ( ), 0 g x x f x h x x is defined. Is the domain of this function is ( , )? m) Does the domain of above function equal to D D g h ,where Df denotes the domain of f x( ) ? n) Does the range of above function equal to R R g h ,where Rf denotes the range of f x( ) ? x -1 0 1 f(x) 1 2 1 x -1 0.5 1 g(x) 2 0 2 x -1 0 1 h(x) 3 0 -3

o)sf)=18)>0, defined a function? -l,g(x)≤0 p)What is the domain of above function? m)If f(2)=3.f(3)=2,what is the value of f(f'(3))? n)f(x)is a positive function,can we say it is increasing function? o)f(x)is a piecewise defined function,which is defined in two interval A and B Can we say AnB is empty? p)f(x)is a piecewise defined function,which is defined in two interval A and B. Can we say UB=(-0,+0)? u)f(x)and g(x)are two piecewise defined functions,which defined in different intervals.Isf(x)+g(x)still a function,if so,what is its domain? v)f(x)and g(x)are two piecewise defined functions,which defined in different intervals.Isf(g(x))still a function,if so,what is its domain? wo-女 If g(x)and h(x)are both one-to-one,is f(x) invertible?? x)f(x)is invertible,is f(x)invertible? y)f(x)and g(x)have the same domains,can we say that they have the same ranges? z)f(x)and g(x)have the same ranges,can we say that they have the same domains? 12.Fill in the following blanks a)If f(x)is an odd function,than f(0)=_ b)If f(x)is an odd function,than f(x)*f(-x)=_ c)If f(x)is an odd function,than for x0,f(x)/f(-x)=_
o) Is 1, ( ) 0, ( ) 1, ( ) 0 g x f x g x defined a function? p) What is the domain of above function? m) If f f (2) 3, '(3) 2 , what is the value of f f ( '(3)) ? n) f x( ) is a positive function, can we say it is increasing function? o) f x( ) is a piecewise defined function, which is defined in two interval A and B. Can we say A B is empty? p) f x( ) is a piecewise defined function, which is defined in two interval A and B. Can we say A B ( , ) ? u) f x( ) and g x( ) are two piecewise defined functions, which defined in different intervals. Is f x g x ( ) ( ) still a function, if so, what is its domain? v) f x( ) and g x( ) are two piecewise defined functions, which defined in different intervals. Is f g x ( ( )) still a function, if so, what is its domain? w) ( ), if , ( ) ( ), if . g x x A f x h x x B If g x( ) and h x( ) are both one-to-one, is f x( ) invertible? x) f x( ) is invertible, is f x( ) invertible? y) f x( ) and g x( ) have the same domains, can we say that they have the same ranges? z) f x( ) and g x( ) have the same ranges, can we say that they have the same domains? 12. Fill in the following blanks a) If f x( ) is an odd function, than f (0) ____. b) If f x( ) is an odd function, than f x f x ( )* ( ) ____. c) If f x( ) is an odd function, than for x f x f x 0, ( ) / ( ) ____

d)If f(x)is an odd function,than for(x)+f (-x)=_ e)If f(x)is an odd function,then f()=_ f)If f(x)is an even function,than f(x)f(-x)= g)If f(x)is an even function,than for f(x)0,f(x)/f(-x)=_ h)If f(x)is an even function,than for (x)-f(-x)= [g(x).ifx>0. i)If f(x)=0,ifx=0,is an odd function,than g(x)(x). (h(x),ifx(b)implies a_b. n)If f(x)is an decreasing function,than f(a)>f(b)implies a_b. o)ff0=2g2)=3,then0+82 f0)g(2) p)If f(1)=2.g(2)=3,then g(f(1))= q)Iff(3)=2,g(2)=3.f(2)=1g(1)=0,then f(g(x))*g(f(x))2=_ r)Fill the blank in the following tables: x 12 3 x 123 Ax) 3 2 1 fx) 021 g(x) 45 6 g(x) 1 20 Ax)+2 g(x) fx)"g(x) 1 2 3 123 0 2 1 Ax) 32 1 g(x) 1 2 0 g(x) 0 g(x)/fx) gx)》
d) If f x( ) is an odd function, than for 3 3 f x f x ( ) ( ) ____. e) If f x( ) is an odd function, then f (0) __________. f) If f x( ) is an even function, than f x f x ( )* ( ) ____. g) If f x( ) is an even function, than for f x f x f x ( ) 0, ( ) / ( ) ____. h) If f x( ) is an even function, than for 3 3 f x f x ( ) ( ) ____ i) If ( ), if 0, ( ) 0, if 0, ( ), if 0. g x x f x x h x x is an odd function, than g x( ) ____ h x( ) . j) If f x( ) is defined as above, but it is an even function, than g x( ) ____ h x( ) . k) If the domain of f x( ) is A, then the domain of sin( ( )) f x is ______. l) If the range of f x( ) is [-1,1], then the range of exp( ( )) f x is ______. m) If f x( ) is an increasing function, than f a f b ( ) ( ) implies a ___ b. n) If f x( ) is an decreasing function, than f a f b ( ) ( ) implies a ___ b. o) If 2 (1) (2) (1) 2, g(2) 3, then (1) (2) f g f f g ___________. p) If f g f (1) 2, g(2) 3, then ( (1)) ____________. q) If 2 (3) 2, g(2) 3, (2) 1, g(1) 0, then ( ( )) ( ( )) x f f f g x g f x ______. r) Fill the blank in the following tables: x 1 2 3 f(x) 3 2 1 g(x) 4 5 6 f(x)+2 g(x) x 1 2 3 f(x) 0 2 1 g(x) 1 2 0 f(x)* g(x) x 1 2 3 f(x) 0 2 1 g(x) 1 2 0 g(x)/ f(x) x 1 2 3 f(x) 3 2 1 g(x) 2 0 3 f( g(x))

s)Let f(x)be a invertible function,and f(a)=b,thenf(b)=_ t)Let f(x)be increasing function in (+)a>b,then f(a)_f(b) u)Let f(x)be increasing function in (+)a>b,then f(a)f(b) v)Let f(x)and g(x)be both increasing functions in (,+o),a>b,then f(a)+8(a)_ _f(b)+g(b) w)Let f(x)and g(x)be increasing and decreasing functions respectively in (-o,+0),a>b,then f(a)-g(a) fb)-gb) x)Let f(x)and g(x)be both increasing functions in (,+)a>b,then f(a)*g(a)—fb)*gb). y)Let f(x)and g(x)be both increasing functions in (,+o),a>b,then f(a)+g(a) f(b)+g(b). z)Let f(x)and g(x)be increasing and decreasing functions respectively in (-,+o),a>b,then for g(a,g(b)≠0,f(a/g(ad_ (b)1gb)
s) Let f x( ) be a invertible function, and f a b ( ) , then 1 f b( ) _________. t) Let f x( ) be increasing function in ( , ) , a b , then f a( ) ____ f b( ) . u) Let f x( ) be increasing function in ( , ) , a b , then 1 f a( ) __ 1 f b( ) . v) Let f x( ) and g x( ) be both increasing functions in ( , ) , a b , then f a g a ( ) ( ) __________ f b g b ( ) ( ) . w) Let f x( ) and g x( ) be increasing and decreasing functions respectively in ( , ) , a b , then f a g a ( ) ( ) __________ f b g b ( ) ( ) . x) Let f x( ) and g x( ) be both increasing functions in ( , ) , a b , then f a g a ( )* ( ) __________ f b g b ( )* ( ) . y) Let f x( ) and g x( ) be both increasing functions in ( , ) , a b , then f a g a ( ) ( ) __________ f b g b ( ) ( ) . z) Let f x( ) and g x( ) be increasing and decreasing functions respectively in ( , ) , a b , then for g a g b f a g a ( ), ( ) 0, ( )/ ( ) __________ f b g b ( )/ ( )

Chapter 2 Limit 1.Fill in the blanks a)If limf(x)=0,then lim f(x)= b)If lim /()=lim f(x)=2,then lim f(x)= 日f吗+=L,hen四U+-》= h f▣0+f0=100,em(0-fN-)= h e)If lim f(x)g(x)=2.lim g(x)=5,then lim f(x)= If lim /()g()=0.limg(x)=2,then lim f(x)= g)If lim f(x)/g(x)=0,limg(x)=1,then lim f(x)=_ hfm四.l,heng= i)If lim f(x)=2,then lim(-f(x))=_ 1 )fmf=3,theni9— k)If lim f(x)=c,then lim[af(x)(x)= )fmf=3,henm广西= m)If limx'f(x)=1,then limf(x)=_ n)If f(x)=-f(-x),limf(x)=L,then L= o)If lim f(x)=2.limf(x)=3.,then lim f(f(x))=_ p)If limf(x)=3.limg(x)=2.then lim(f(x)+2g(x))= a)If limf(x)=3.limg(x)=2.then lim (3f(x)-g(x))=_
Chapter 2 Limit 1. Fill in the blanks a) If 0 lim ( ) 0 x x f x , then 0 lim ( ) x x f x ______ b) If 0 0 lim ( ) lim ( ) 2 x x x x f x f x , then 0 lim ( ) x x f x ______ c) If 0 0 0 ( ) ( ) lim h f x h f x L h , then 0 0 0 lim ( ) ( ) h f x h f x ______ d) If 0 (1 ) (1) lim 1000 h f h f h , then 0 lim (1) (1 ) h f f h _____ e) If 0 0 lim ( ) ( ) 2, lim ( ) 5, x x x x f x g x g x then 0 lim ( ) x x f x ______ f) If 0 0 lim ( ) ( ) 0, lim ( ) 2, x x x x f x g x g x then 0 lim ( ) x x f x ______ g) If 0 0 lim ( ) / ( ) 0, lim ( ) 1, x x x x f x g x g x then 0 lim ( ) x x f x ______ h) If 0 ( ) lim 1, x f x x , then 0 lim ( ) x f x ______ i) If 0 lim ( ) 2 x x f x , then 0 lim ( ) x x f x ______ j) If 0 lim ( ) 3 x x f x , then 0 1 lim x x f x( ) ______ k) If 0 lim ( ) x x f x c , then 0 2 lim ( ) ( ) x x af x bf x ______ l) If 0 lim ( ) 3 x x f x , then 0 lim ( ) x x f x ______ m) If 2 0 lim ( ) 1, x x f x then 0 lim ( ) x f x ______ n) If 0 ( ) ( ), lim ( ) , x f x f x f x L then L= o) If 1 2 lim ( ) 2,lim ( ) 3, x x f x f x , then 1 lim ( ( )) x f f x ______ p) If 0 0 lim ( ) 3, lim ( ) 2, x x f x g x then 0 lim ( ) 2 ( ) x f x g x _____ q) If 0 0 lim ( ) 3, lim ( ) 2, x x f x g x then 2 0 lim 3 ( ) ( ) x f x g x ____
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,答案).pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,试卷).pdf
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第四章 微分方程题库.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第二章 导数与微分.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第三章 积分及其应用.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第一章 函数与极限.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第八章 重积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第九章 曲线积分与曲面积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第七章 多元函数微分学.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)空间解析几何题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)无穷级数1.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)微分方程1.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第9章 多元函数微分学及其应用.docx
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第8章 无穷级数.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第7章 微分方程.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第6章 定积分及其应用.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第10章 重积分.doc
- 江西科技学院:《高等数学》课程教学资源(经管类下册题库,无答案)重积分.doc
- 江西科技学院:《高等数学》课程教学资源(经管类下册题库,无答案)无穷级数.doc
- 江西科技学院:《高等数学》课程教学资源(经管类下册题库,无答案)微分方程.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题样本.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)函数.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)极限 Limits & Continuity.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数 The Derivatives.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数应用 The Derivatives in Graphing and Application.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)积分 Intergration.ppt
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习指导(授课老师:高源).pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习参考手册.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程经典问题专题整理——函数变换法的应用.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)二阶线性常系数微分方程求解——特征根法,你到底,你到底是谁.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的物理学公式定律.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)定解问题书写原则和方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)关于分离变量法使用条件的探讨.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)探寻分离变量法心底的迷——疑难点阶段性总结.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)非齐次问题处理方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)捕捉分离变量法温柔气息.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)勒让德多项式的递推公式.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)利用变量代换转化为勒让德方程并求解.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的傅里叶变换对.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)积分公式——方向导数专题.pdf