同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)极限 Limits & Continuity

Chapter Two Limits Continuity
Chapter Two Limits & Continuity

Enter Calculus World ●Ve have known“Function” o This is the tool for us enter the Calculus World ●The first adventure is“Limit” o Limits is the soul of Calculus as well as "Advanced Mathematics"!
Enter Calculus World ⚫We have known “Function” ⚫This is the tool for us enter the Calculus World ⚫The first adventure is “Limit” ⚫Limits is the soul of Calculus as well as “Advanced Mathematics”!

Ancient Limit Thought ● Zhuangzi(庄子,369-286B.C) in《天下》said: ○一尺之锤,日取其半,万世不竭。 o Chinese ancient mathematician Liu Hui(刘徽)in263a.c.said in《九章算术》 ○“割之弥细,所失弥小.割之又割, 以至于不可割,则与圆周合体,而无 所失矣
Ancient Limit Thought ⚫ Zhuangzi (庄子,369-286 B.C) in《天下》said: 一尺之锤,日取其半,万世不竭。 ⚫ Chinese ancient mathematician Liu Hui (刘徽) in 263 a.c. said in《九章算术》 : “割之弥细,所失弥小. 割之又割, 以至于不可割,则与圆周合体,而无 所失矣

Calculation of a Circle Area Area of Circle =3.14159 Inside Outsid Error to Circle Polygo e n Area Polygo n Area N=4 2 4 1.142/0.858 N=6 2.598 3.464 0.544/0.323 N=8 2.828 3.314 0.313/0.172 N=10 2.939 3.249 0.203/0.108 N=123 3.215 0.142/0.074
Inside Polygo n Area Outsid e Polygo n Area Error to Circle N=4 2 4 1.142/0.858 N=6 2.598 3.464 0.544/0.323 N=8 2.828 3.314 0.313/0.172 N=10 2.939 3.249 0.203/0.108 N=12 3 3.215 0.142/0.074 Calculation of a Circle Area

Zeno of Elea (490-430 BC) paradoxes- O Achilles and the Tortoise OA is in a footrace with a slow T by 10*its speed. OA allows T a head start of 100 meters. OAfter A run 100 m,to T start point,meanwhile,T run 10 m. OA then run 10 m,and T has advanced farther; OA need more time to reach 3rd point,while T moves ahead. O Thus,whenever A reaches somewhere T has been,he still has farther to go.Therefore,as there are an infinite number of points A must reach where T has already been,he never overtake T
Zeno of Elea (490–430 BC) paradoxes- ⚫ Achilles and the Tortoise : A is in a footrace with a slow T by 10* its speed. A allows T a head start of 100 meters. After A run 100 m, to T start point, meanwhile, T run 10 m. A then run 10 m, and T has advanced farther; A need more time to reach 3rd point, while T moves ahead. Thus, whenever A reaches somewhere T has been, he still has farther to go. Therefore, as there are an infinite number of points A must reach where T has already been, he never overtake T

Some Examples for Limit ●Value of a function ●Area Problem OGiven a function f;find the area between the graph of fand an interval on the x-axis ●Tangent Line Problem OGive a function f;and a point on its graph,find an equation of the line that is tangent to the graph at the point
Some Examples for Limit ⚫Value of a function ⚫Area Problem Given a function f, find the area between the graph of f and an interval on the x-axis ⚫Tangent Line Problem Give a function f, and a point on its graph, find an equation of the line that is tangent to the graph at the point

Tangent Line
Tangent Line

Limit (An Informal View) If the value of f(x)can be made as close as we like to L by taking values of x sufficiently to a(not equal to a),then we write lim f(x)=L X->0 ●Read as: 0rf(x)>L,asx→a “the limit of f(x)as x approaches a is L.” ●Equivalently 1im(f(x)-L)=0
Limit (An Informal View) ⚫If the value of f (x) can be made as close as we like to L by taking values of x sufficiently to a (not equal to a), then we write ⚫Read as: “the limit of f (x) as x approaches a is L.” ⚫Equivalently lim ( ) ( ) , x a f x L or f x L as x a → = → → lim ( ) 0 ( ) x a f x L → − =

Examples of Limit Value x-1 f(x)= (N-1)(x+1) 4Sx→1, -1 0.999 0.9999 0.99999 1 1.00001 1.0001 1.001 X f(x) 1.999500 1.999950 1.999995 2 2.000005 2.000050 2.000500 Sinx asx→0, 8(x)= >? x -0.001 -0.0001 -0.00001 0/ 0.00001 0.0001 0.001 (x) 0.9999998 0.999999 1 g 0.9999999 0.999999 0.9999999 0.9999998 98 99998 99998 98
Examples of Limit Value ⚫ ⚫ 1 ( 1)( 1) 1, ( ) ? 1 1 x x x as x f x x x − − + → = = → − − x 0.999 0.9999 0.99999 1 1.00001 1.0001 1.001 f (x) 1.999500 1.999950 1.999995 2 2.000005 2.000050 2.000500 sin 0, ( ) ? x as x g x x → = → x -0.001 -0.0001 -0.00001 0 0.00001 0.0001 0.001 g (x) 0.9999998 0.9999999 98 0.999999 99998 1 0.999999 99998 0.9999999 98 0.9999998

Example of No Limit Value asx→0,f(x)=sin π x πk f(x) ±2 ±π/2 ±1 士1 士π 0 ±2/3 ±T/2 ±1 ±10/100 士10 0 ±10/105 ±(10+1/2)π ±1 ±10/1000 ±100元 0 ±10/1005 ±(100+1/2) ±1 ±10/10000 士1000元 0 ±10/10005 ±(1000+1/2)π ±1 ±10/100000 +10000元 0
Example of No Limit Value ⚫ ⚫ as x f x 0, ( ) sin ? x → = → x π/x f(x) ±2 ±π/2 ±1 ±1 ±π 0 ±2/3 ±π/2 ±1 ±10/100 ±10π 0 ±10/105 ±(10+1/2)π ±1 ±10/1000 ±100π 0 ±10/1005 ±(100+1/2)π ±1 ±10/10000 ±1000π 0 ±10/10005 ±(1000+1/2)π ±1 ±10/100000 ±10000π 0
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)函数.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题样本.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题集 Calculus Exercise.pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,答案).pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,试卷).pdf
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第四章 微分方程题库.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第二章 导数与微分.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第三章 积分及其应用.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第一章 函数与极限.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第八章 重积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第九章 曲线积分与曲面积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第七章 多元函数微分学.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)空间解析几何题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)无穷级数1.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)微分方程1.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第9章 多元函数微分学及其应用.docx
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第8章 无穷级数.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第7章 微分方程.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第6章 定积分及其应用.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第10章 重积分.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数 The Derivatives.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数应用 The Derivatives in Graphing and Application.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)积分 Intergration.ppt
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习指导(授课老师:高源).pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习参考手册.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程经典问题专题整理——函数变换法的应用.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)二阶线性常系数微分方程求解——特征根法,你到底,你到底是谁.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的物理学公式定律.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)定解问题书写原则和方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)关于分离变量法使用条件的探讨.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)探寻分离变量法心底的迷——疑难点阶段性总结.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)非齐次问题处理方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)捕捉分离变量法温柔气息.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)勒让德多项式的递推公式.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)利用变量代换转化为勒让德方程并求解.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的傅里叶变换对.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)积分公式——方向导数专题.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)01 Representation.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)02 Discrete differential geometry.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)03 Mesh Smoothing.pdf