同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数 The Derivatives

Chapter Three The Derivatives
Chapter Three The Derivatives

Definition of The Derivative Function The function f defined by the formula f(x)=lim I(x+h)-f(x) h-→0 h which is called the derivative of fwith respect to x. The domain of f consists of all x in the domain of ffor which the limit exists
Definition of The Derivative Function ⚫ The function f’ defined by the formula which is called the derivative of f with respect to x. The domain of f’ consists of all x in the domain of f for which the limit exists. 0 ( ) ( ) '( ) limh f x h f x f x → h + − =

Definition of Differentiability A function fis said to be differentiable at xo if the limit f()=limh-f(x) h-→0 h exists.If fis differentiable at each point of the open interval of the form (a,b),then we say that it is differentiable on (a,b),and similarly for open intervals of the form (a,+oo)and (o,+o). The last case,we say that fis differentiable everywhere
Definition of Differentiability ⚫ A function f is said to be differentiable at x0 if the limit exists. If f is differentiable at each point of the open interval of the form (a,b), then we say that it is differentiable on (a,b), and similarly for open intervals of the form (a,+∞) and (-∞,+∞). The last case, we say that f is differentiable everywhere. 0 0 0 0 ( ) ( ) '( ) limh f x h f x f x → h + − =

Differentiable Point VS Continuous Point ●Theorem If a function fis differentiable at xo,then fis continuous at xo
Differentiable Point VS Continuous Point ⚫Theorem If a function f is differentiable at x0 , then f is continuous at x0

One-sided Derivative Left-hand derivatives L()=lim-f(xo) h>0 h Right-hand derivatives f.()=lim f(h)-f(xo) h>0 h
One-sided Derivative ⚫ Left-hand derivatives ⚫ Right-hand derivatives 0 0 0 0 ( ) ( ) '( ) lim h f x h f x f x h − → − + − = 0 0 0 0 ( ) ( ) '( ) lim h f x h f x f x h + → + + − =

Differentiable in a Cloed/Half Closed Interval OF is differentiable on an interval of the form [a,b],[a,+),(-0,b],la,b)of (a,b]if it is differentiable all points inside the interval and the appropriate one-sided derivative exists at each included endpoint
Differentiable in a Cloed/Half Closed Interval ⚫F is differentiable on an interval of the form [a,b], [a,+∞),(-∞,b],[a,b) of (a,b] if it is differentiable all points inside the interval and the appropriate one-sided derivative exists at each included endpoint

Other Notations f)-么[rlf=o[un Fory=f(x),f(x)=y(x),f(x)= dy dx Derivative at point xo, x)4Vw·x)=pUe ()-y(x).)=
Other Notations ⚫ ⚫ For y = f (x), ⚫ Derivative at point x0 , '( ) [ ( )], '( ) [ ( )], x d f x f x f x D f x dx = = '( ) '( ), '( ) dy f x y x f x dx = = 0 0 0 0 0 0 0 0 '( ) [ ( )] , '( ) [ ( )] '( ) '( ), '( ) x x x x x x x d f x f x f x D f x dx dy f x y x f x dx = = = = = = =

Derivative of a Constant f(x)=const.=>f(x)=0 ●Theorem The derivative of a constant function is 0; that is,if c is any real number,then 0
Derivative of a Constant ⚫ f (x) = const. ═> f’(x) = 0 ⚫ Theorem The derivative of a constant function is 0; that is, if c is any real number, then [ ] 0 d c dx =

Derivatives of Integer Powers of x Theorem (The Power Rule) If n is any integer,then 层Tm
Derivatives of Integer Powers of x ⚫ Theorem (The Power Rule) If n is any integer, then 1 [ ] d n n x nx dx − =

Derivative of a Constant Times a Function Theorem (Constant Multiple Rule) If fis differentiable at x and c is any real number,then cfis also differentiable at x and fw=c安e
Derivative of a Constant Times a Function ⚫ Theorem (Constant Multiple Rule) If f is differentiable at x and c is any real number, then cf is also differentiable at x and [ ( )] [ ( )] d d cf x c f x dx dx =
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)极限 Limits & Continuity.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)函数.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题样本.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)习题集 Calculus Exercise.pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,答案).pdf
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D)2008-2009学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷,试卷).pdf
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第四章 微分方程题库.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第二章 导数与微分.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第三章 积分及其应用.doc
- 江西科技学院:《高等数学》课程教学资源(D题库,无答案)第一章 函数与极限.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第八章 重积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第九章 曲线积分与曲面积分题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)第七章 多元函数微分学.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)空间解析几何题库.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)无穷级数1.doc
- 江西科技学院:《高等数学》课程教学资源(A2题库,无答案)微分方程1.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第9章 多元函数微分学及其应用.docx
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第8章 无穷级数.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第7章 微分方程.doc
- 江西科技学院:《高等数学》课程教学资源(B2题库,无答案)第6章 定积分及其应用.doc
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)导数应用 The Derivatives in Graphing and Application.ppt
- 同济大学:《高等数学 Advanced Mathematics》课程教学资源(高数D,PPT课件)积分 Intergration.ppt
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习指导(授课老师:高源).pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程复习参考手册.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)数理方程经典问题专题整理——函数变换法的应用.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)二阶线性常系数微分方程求解——特征根法,你到底,你到底是谁.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的物理学公式定律.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)定解问题书写原则和方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)关于分离变量法使用条件的探讨.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)探寻分离变量法心底的迷——疑难点阶段性总结.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)非齐次问题处理方法.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)捕捉分离变量法温柔气息.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)勒让德多项式的递推公式.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)利用变量代换转化为勒让德方程并求解.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)重要的傅里叶变换对.pdf
- 中国科学技术大学:《数理方程》课程教学资源(讲稿)积分公式——方向导数专题.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)01 Representation.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)02 Discrete differential geometry.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)03 Mesh Smoothing.pdf
- 中国科学技术大学:《数字几何处理 Digital Geometry Processing》课程教学资源(课件讲义)04 Mesh Parameterizations.pdf