香港大学:Games and the Mathematical Mind

香港大學理學院 Games and the Mathematical Mind Dr.Ng Tuen Wai Department of Mathematics,HKU
Games and the Mathematical Mind Dr. Ng Tuen Wai Department of Mathematics, HKU

What shall we do in this workshop Play some interesting games like HEX. For these games,consider the following questions: .Is it possible for the game to have a draw? .Is it possible for one of the players to have a winning strategy?If it is possible,who should have a winning strategy and what should be a winning strategy? ■ We shall apply Zermelo's Theorem to answer these questions
What shall we do in this workshop ? Play some interesting games like HEX. For these games, consider the following questions: Is it possible for the game to have a draw? Is it possible for one of the players to have a winning strategy? If it is possible, who should have a winning strategy and what should be a winning strategy? We shall apply Zermelo’s Theorem to answer these questions

What shall we do in this workshop? Learn some problem solving techniques based on the great mathematician George Polya's method (please refer to "How to solve it"). Finally,there will be a group competition on solving some mathematics problems
What shall we do in this workshop? Learn some problem solving techniques based on the great mathematician Finally, there will be a group competition on solving some mathematics problems. George Pólya ’s method (please refer to “How to solve it”)

HEX You can play Hex with your friends at http://hkumath.hku.hk/~wkc/MathModel/index.php
You can play Hex with your friends at http://hkumath.hku.hk/~wkc/MathModel/index.php

Hex or Nash is a two-player game played on a rhombic board with hexagonal cells. It was invented by a Danish mathematician Piet Hein in 1942,and became popular under the name of Hex
Hex or Nash is a two-player game played on a rhombic board with hexagonal cells. It was invented by a Danish mathematician Piet Hein in 1942, and became popular under the name of Hex

The game was re-discovered in 1948 by John Nash when he was a phD student at Princeton. At that time,the game was commonly called Nash. NASH 2R(* A Beautiful Mind HAROLD.KUHN 2d SYLVIA NASAR u
The game was re-discovered in 1948 by John Nash, when he was a PhD student at Princeton. At that time, the game was commonly called Nash . A Beautiful Mind

Questions one may ask... -Is it possible to end in a draw -Is there a winning strategy for one of the players
Questions one may ask … Is it possible to end in a draw ? Is there a winning strategy for one of the players ?

We first rotate the board so that it has the following orientation. blue red red blue
We first rotate the board so that it has the following orientation

blue red red blue

Further questions -We may then ask the following questions: -Is it possible for one of the players to have a winning strategy? -If it is possible,who should have a winning strategy? What do we mean by a winning strategy Drawing strategy
Further questions We may then ask the following questions: Is it possible for one of the players to have a winning strategy? If it is possible, who should have a winning strategy? What do we mean by a winning strategy ? Drawing strategy ?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 香港大学:Seminar on Applications of Mathematics - Voting.pdf
- 香港大学:From Nash to Nash’s Game Theory.pdf
- 香港大学:博弈高手——浅论约翰·纳殊的诺具尔得理论.pdf
- 香港大学:谈情说数——跟爱情有关的数学.pdf
- 香港大学:《数趣漫话》谈情说数——跟爱情有关的数学.pdf
- 香港大学:拍卖中寻对策(PPT讲稿).pdf
- 佛山科学技术学院:2017版数学与应用数学(师范)专业理论课教学大纲(合集).pdf
- 中国科学技术大学:几何建模与处理基础(PPT讲稿)细分曲线(主讲:刘利刚).pdf
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第八章 向量代数与空间解析几何 第四节 空间直线及其方程.ppsx
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第八章 向量代数与空间解析几何 第六节 空间曲线及其方程.ppsx
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第八章 向量代数与空间解析几何 第五节 曲面及其方程.ppsx
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第八章 向量代数与空间解析几何 第二节 数量积、向量积、混合积.ppsx
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第八章 向量代数与空间解析几何 第三节 平面及其方程.ppsx
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第八章 向量代数与空间解析几何 第一节 向量及其线性运算.ppsx
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第三章 微分中值定理与导数的应用 第四节 函数的单调性与曲线的凹凸性.pps
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第三章 微分中值定理与导数的应用 第五节 函数的极值与最大最小值.pps
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第三章 微分中值定理与导数的应用 第七节 曲率.pps
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第三章 微分中值定理与导数的应用 第三节 泰勒公式.pps
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第三章 微分中值定理与导数的应用 第二节 洛必达法则.pps
- 同济大学:《高等数学》课程教学资源(预习PPT讲稿)第三章 微分中值定理与导数的应用 第一节 中值定理.pps
- 香港大学:Solving Polynomial Equations.pdf
- 香港大学:Solving Polynomial Equations(2006.12.5).pdf
- ON-LINE LIST COLOURING OF RANDOM GRAPHS.pdf
- 西安电子科技大学:《线性代数》课程教学资源(PPT课件)线性代数机算与应用.ppt
- 西安电子科技大学:《线性代数》课程教学资源(讲义)线性代数讲义(共六章,主讲:李仁先).pdf
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第一部分 数理逻辑 第一章 命题逻辑(主讲:肖明军).ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第一部分 数理逻辑 第二章 谓词逻辑.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第二部分 集合论 第三章 集合代数.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第二部分 集合论 第四章 二元关系.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第二部分 集合论 第五章 函数.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第二部分 集合论 第六章 集合的基数.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第三部分 代数结构 第七章 代数系统.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第三部分 代数结构 第八章 群论.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第三部分 代数结构 第九章 环与域.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第三部分 代数结构 第十章 格与布尔代数.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第三部分 图论 第十一章 图的基本概念.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第三部分 图论 第十二章 树.ppt
- 中国科学技术大学:《离散数学》课程教学资源(PPT课件讲稿)第三部分 图论 第十三章 几种特殊的图.ppt
- 《力学》课程教学资源(数学工具)力学数学预备知识——微积分初步.pdf
- 《力学》课程教学资源(数学工具)矢量分析与场论初步.pdf