南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Min-Cut

Min-Cut GV,E) Partition V into two parts: S and T minimize the cut C(S,T) ● many important applications (e.g.parallel computing) deterministic algorithm: ●max-flow min-cut C(S,T) ●best known upper ={uw∈Eu∈S and v∈T} bound:O(mn n2log n)
T S Min-Cut • Partition V into two parts: S and T • minimize the cut • many important applications (e.g. parallel computing) • deterministic algorithm: • max-flow min-cut • best known upper bound: O(mn + n2log n) G(V,E) |C(S, T)| = {uv E | u S v T} C(S, T)

Contraction ·multigraph G(V,E) multigraph:allow parallel edges for an edge e,contract(e) merges the two endpoints
Contraction • multigraph G e (V, E ) • multigraph: allow parallel edges • for an edge e, contract(e) merges the two endpoints

Contraction ·multigraph G(V,E) multigraph:allow parallel edges for an edge e,contract(e) merges the two endpoints
Contraction • multigraph G(V, E ) • multigraph: allow parallel edges • for an edge e, contract(e) merges the two endpoints

Karger's min-cut Algorithm MinCut multigraph G(V,E)) while IV>2 do choose a uniform e∈E; contract(e); return remaining edges;
Karger’s min-cut Algorithm MinCut ( multigraph G(V,E) ) while |V|>2 do • choose a uniform e ∈E ; contract(e); return remaining edges;

Karger's min-cut Algorithm MinCut multigraph G(V,E)) while IV>2 do choose a uniform e∈E; contract(e); return remaining edges;
Karger’s min-cut Algorithm MinCut ( multigraph G(V,E) ) while |V|>2 do • choose a uniform e ∈E ; contract(e); return remaining edges;

Karger's min-cut Algorithm MinCut multigraph G(V,E)) while IV>2 do choose a uniform e∈E; contract(e); return remaining edges;
Karger’s min-cut Algorithm MinCut ( multigraph G(V,E) ) while |V|>2 do • choose a uniform e ∈E ; contract(e); return remaining edges;

Karger's min-cut Algorithm MinCut multigraph G(V,E)) while IV>2 do choose a uniform e∈E; contract(e); return remaining edges;
Karger’s min-cut Algorithm MinCut ( multigraph G(V,E) ) while |V|>2 do • choose a uniform e ∈E ; contract(e); return remaining edges;

Karger's min-cut Algorithm MinCut multigraph G(V,E)) while IV>2 do choose a uniform e∈E; contract(e); return remaining edges;
Karger’s min-cut Algorithm MinCut ( multigraph G(V,E) ) while |V|>2 do • choose a uniform e ∈E ; contract(e); return remaining edges;

Karger's min-cut Algorithm MinCut multigraph G(V,E)) while IV>2 do choose a uniform e∈E; contract(e); return remaining edges;
Karger’s min-cut Algorithm MinCut ( multigraph G(V,E) ) while |V|>2 do • choose a uniform e ∈E ; contract(e); return remaining edges;

Karger's min-cut Algorithm MinCut multigraph G(V,E)) while IV>2 do choose a uniform e∈E; contract(e); return remaining edges; edges returned
edges returned Karger’s min-cut Algorithm MinCut ( multigraph G(V,E) ) while |V|>2 do • choose a uniform e ∈E ; contract(e); return remaining edges;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Markov Chain.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Identity Testing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Finger printing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Coupling.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Concentration.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Chernoff.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Balls and Bins.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Principle of Inclusion-Exclusion(PIE).pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Polya.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Function.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Sets.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Cayley.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Exercise Lecture For Advanced Algorithms(2022 Fall).pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Mixing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Moments.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Random Rounding.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 4 Task Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 5 ask Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case Analysis - Use DARTS to Design a S/W System of Robot Controller.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case 4.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Hot topics in ES.pdf
- 中国计算机学会学术著作丛书:《对等网络——结构、应用与设计 Peer-to-Peer Network Structure, Application and Design》PDF电子书(正文,共九章).pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic inference in probabilistic graphical models.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)On Local Distributed Sampling and Counting.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)Convergence of MCMC and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model.pdf
- 《计算机科学》相关教学资源(参考文献)Counting hypergraph matchings up to uniqueness threshold.pdf
- 《计算机科学》相关教学资源(参考文献)Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities.pdf