《计算机科学》相关教学资源(参考文献)Counting hypergraph matchings up to uniqueness threshold

Phase Transition of Hypergraph Matchings Yitong Yin Nanjing University Joint work with:Jinman Zhao (Nanjing Univ./U Wisconsin)
Phase Transition of Hypergraph Matchings Joint work with: Jinman Zhao (Nanjing Univ. / U Wisconsin) Yitong Yin Nanjing University

hardcore model monomer-dimer model undirected graph G=V,E) activity入 configurations: independent sets matchings M weight: w(D=入M w(M)=入M partition function: Z=1:independent sets in GW(D =EM:matchingsin G W(M) Gibbs distribution: u(D)=w(D/Z u(M)=w(M)/Z approximate counting: FPTAS/FPRAS for Z sampling:sampling from u within TV-distance s in time poly(n,log1/8)
hardcore model monomer-dimer model configurations: independent sets I matchings M weight: w(I) = λ|I| w(M) = λ|M| partition function: Z = ΣI:independent sets in G w(I) Z = ΣM:matchings in G w(M) Gibbs distribution: μ(I) = w(I) / Z μ(M) = w(M) / Z approximate counting: sampling: FPTAS/FPRAS for Z sampling from μ within TV-distance ε in time poly(n, log1/ε) G = (V,E) undirected graph λ λ λ λ λ λ λ activity λ λ λ

Decay of Correlation (Weak Spatial Mixing,WSM) Pr[v∈I|o] hardcore model: I-u →∞ (d+1)-regular tree ---0 boundary condition o:fixing leaves at level l to be occupied/unoccupied by I WSM:Pr[lv∈I|o]does not depend on o when l-→o uniqueness threshold:Xc= (d-1)d+1) ●入≤入c台VSM holds on(d+l)-regular tree台Gibbs measure is unique ·Veitz'06]:λe inapproximable unless NP=RP
(d+1)-regular tree ` ! 1 v boundary condition σ : fixing leaves at level l to be occupied/unoccupied by I Pr[v 2 I | ] Decay of Correlation c = dd (d 1)(d+1) hardcore model: (Weak Spatial Mixing, WSM) uniqueness threshold: • λ ≤ λc 㱻 WSM holds on (d+1)-regular tree 㱻 Gibbs measure is unique • [Weitz ‘06]: λ λc 㱺 inapproximable unless NP=RP WSM: Pr[v∈I | σ] does not depend on σ when l→∞ I ∼μ

Decay of Correlation (Weak Spatial Mixing,WSM) Pr[e∈M|o]e monomerdimer model: L→0∞ M-u regular tree 99…999 boundary condition o:fixing leaf-edges at level l to be occupied/unoccupied by M WSM:Pr[e∈M|]does not depend on o when /∞ WSM always holds+Gibbs measure is always unique [Jerrum,Sinclair'89]:FPRAS for all graphs [Bayati,Gamarnik,Katz,Nair,Tetali'08]:FPTAS for graphs with bounded max-degree
regular tree ` ! 1 boundary condition σ : fixing leaf-edges at level l to be occupied/unoccupied by M Decay of Correlation (Weak Spatial Mixing, WSM) • WSM always holds 㱻 Gibbs measure is always unique • [Jerrum, Sinclair ’89]: FPRAS for all graphs • [Bayati, Gamarnik, Katz, Nair, Tetali ’08]: FPTAS for graphs with bounded max-degree WSM: Pr[e∈M | σ] does not depend on σ when l→∞ monomer-dimer model: Pr[e 2 M | ] e M ∼μ

CSP (Constraint Satisfaction Problem) 2 degree degree =2 max-degree≤d ≤d matching constraint matchings: variables xi∈{0,1} (at-most-1)
CSP (Constraint Satisfaction Problem) 1 2 3 4 5 6 a b c d e f g 1 2 3 4 5 6 a b c d e f g matchings: variables xi 2 {0, 1} matching constraint (at-most-1) degree ≤ d degree = 2 max-degree ≤ d

CSP (Constraint Satisfaction Problem) degree degree =2 max-degree≤d ≤d 8 matching constraint matchings: variables xi∈{0,1} (at-most-1) matching constraint independent sets: variables i∈{0,l} (at-most-1) partition function: Z= 入川1 i∈{0,l}n satisfying all constraints
CSP (Constraint Satisfaction Problem) 1 2 3 4 5 6 a b c d e f g 1 2 3 4 5 6 a b c d e f g matchings: independent sets: variables xi 2 {0, 1} matching constraint (at-most-1) matching constraint (at-most-1) variables xi 2 {0, 1} max-degree ≤ d partition function: Z = X ~x2{0,1}n satisfying all constraints k~xk1 degree ≤ d degree = 2

CSP (Constraint Satisfaction Problem) deg≤d+l deg≤k+l c2 t> c☒ 4 c函 a Boolean at-most-1 variables constraints partition function: ∑ 入川1 i∈{0,1}n satisfying all constraints
CSP (Constraint Satisfaction Problem) Boolean variables deg ≤ d+1 deg ≤ k+1 x1 x2 x3 x4 x5 c1 c2 c3 c4 c5 c6 c7 Z = X ~x2{0,1}n satisfying all constraints k~ xk1 partition function: at-most-1 constraints

Hypergraph matching hypergraph =(V,E) vertex set V hyperedge e∈E,eCV a matching is an subset MCE of disjoint hyperedges partition .U] Zλ(H)= ∑ λM川 .U4 i. functions: M:matching of H ,5 .29 8 es .6 e2 es Gibbs λXM distribution: u(M)= Z(孔)
v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 v1 v2 v3 v4 v5 v6 v7 v8 v9 e1 e2 e3 e4 e5 Hypergraph matching Z(H) = X M: matching of H |M| hypergraph H = (V,E) vertex set V hyperedge e 2 E, e ⇢ V a matching is an subset M⊂E of disjoint hyperedges µ(M) = |M| Z(H) partition functions: Gibbs distribution:

matchings in hypergraphs of max-degree sk+1 and max-edge-sizes d+1 matching 01 .4 th2. incidence graph primal: .5 ,28 e3 6 9 e2 e3 5 6 dual: CSP defined by matching(packing)constraint 7 06 independent set independent sets in hypergraphs of max-degree sd+1 and max-edge-size sk+1 independent sets:a subset of non-adjacent vertices (to be distinguished with:vertex subsets containing no hyperedge as subset)
v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 v1 v2 v3 v4 v5 v6 v7 v8 v9 e1 e2 e3 e4 e5 matchings in hypergraphs of max-degree ≤ k+1 and max-edge-size ≤ d+1 v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 * * * * * * * * * * * * * * v5 * v6 * e2 * v1 * v2 * e1 * v3 * v4 * e5 * e3 * e4 * v7 * v8 * v9 * incidence graph primal: dual: v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 * * * * * * * * * * * * * * v5 * v6 * e2 * v1 * v2 * e1 * v3 * v4 * e5 * e3 * e4 * v7 * v8 * v9 * matching independent set CSP defined by matching(packing) constraint independent sets in hypergraphs of max-degree ≤ d+1 and max-edge-size ≤ k+1 independent sets: a subset of non-adjacent vertices (to be distinguished with: vertex subsets containing no hyperedge as subset)

Known results deg≤d+l ☑deg≤k+l C2 independent sets of hypergraphs of max-degree≤d+1 and max-edge-size≤k+l C4 cs partition function: Z= 入川1 元∈{0,1}n satisfying Boolean at-most-1 all constraints variables constraints Classification of approximability in terms of )d,k? ●k=l:hardcore model d=1:monomer-dimer model ●forλ=1: [Dudek,Karpinski,Rucinski,Szymanska 2014]:FPTAS when d=2,k<2 [Liu and Lu 2015]FPTAS when d=2,k<3
Known results • k=1: hardcore model • d=1: monomer-dimer model •for λ=1: •[Dudek, Karpinski, Rucinski, Szymanska 2014]: FPTAS when d=2, k≤2 •[Liu and Lu 2015] FPTAS when d=2, k≤3 Boolean variables deg ≤ d+1 deg ≤ k+1 x1 x2 x3 x4 x5 c1 c2 c3 c4 c5 c6 c7 at-most-1 constraints Z = X ~x2{0,1}n satisfying all constraints k~ xk1 partition function: independent sets of hypergraphs of max-degree ≤ d+1 and max-edge-size ≤ k+1 Classification of approximability in terms of λ, d, k ?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机科学》相关教学资源(参考文献)Convergence of MCMC and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)On Local Distributed Sampling and Counting.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic inference in probabilistic graphical models.pdf
- 中国计算机学会学术著作丛书:《对等网络——结构、应用与设计 Peer-to-Peer Network Structure, Application and Design》PDF电子书(正文,共九章).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Hot topics in ES.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case 4.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case Analysis - Use DARTS to Design a S/W System of Robot Controller.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 5 ask Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 4 Task Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Random Rounding.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Moments.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Mixing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Min-Cut.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Markov Chain.pdf
- 《计算机科学》相关教学资源(参考文献)Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial mixing and the connective constant - Optimal bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial Mixing of Coloring Random Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay on Planar Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Assigning Tasks for Efficiency in Hadoop.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Improved FPTAS for Multi-Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-probe proofs and nondeterministic cell-probe complexity.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-Probe Proofs.pdf
- 《计算机科学》相关教学资源(参考文献)Fast construction of overlay networks.pdf
- 《计算机科学》相关教学资源(参考文献)Ranged hash functions and the price of churn.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions.pdf
- 《计算机科学》相关教学资源(参考文献)Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma.pdf
- 《计算机科学》相关教学资源(参考文献)Distributed Algorithms for MCMC Sampling.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling & Counting for Big Data.pdf
- 《计算机科学》相关教学资源(参考文献)Introduction to the Correlation Decay Method.pdf
- 《计算机科学》相关教学资源(参考文献)Local Distributed Sampling from Locally-Defined Distribution.pdf
- 《计算机科学》相关教学资源(参考文献)Rectangle Inequalities for Data Structure Lower Bounds.pdf