《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems

Correlation Decay up to Uniqueness in Spin Systems Yitong Yin Nanjing University Joint work with Liang Li (Peking University) Pinyan Lu (Microsoft research Asia)
Correlation Decay up to Uniqueness in Spin Systems Joint work with Liang Li (Peking University) Pinyan Lu (Microsoft research Asia) Yitong Yin Nanjing University

Two-State Spin System graph G=(V,目 2 states {0,1) configuration o:V→{0,l} A [-月 b=(b0,b1)=(入,1) w(o)=ΠAa,o(o)IIb() (u,v)∈E v∈V edge activity: external field: λ○ 01
Two-State Spin System A = A0,0 A0,1 A1,0 A1,1 = 1 1 2 states {0,1} configuration : V {0, 1} graph G=(V,E) edge activity: 1 external field: 1 b = (b0, b1)=(, 1) w() = (u,v)E A(u),(v) vV b(v)

Two-State Spin System graph G=(V,E 2 states {0,1) configuration V->{0,1} 4-[=日 b=(b0,b1)=(入,1) w(o)=ΠAgu.a(wΠba) (u,v)∈E u∈V Gibbs measure: Pr(a)= w(o) Z(G) partition function: ZG )=入w(o)》 o∈{0,1}V
Two-State Spin System A = A0,0 A0,1 A1,0 A1,1 = 1 1 2 states {0,1} configuration : V {0, 1} graph G=(V,E) w() = (u,v)E A(u),(v) vV b(v) Gibbs measure: = {0,1}V partition function: Z(G) w() 8Z() = w() Z(G) b = (b0, b1)=(, 1)

w(o)=Ao(u),(v)IIba() (u,w)∈E ∈V partition function: Z(G)=∑w(a) o∈{0,1}v Gibbs measure: Pr(a)= w(o) ZG) marginal probability: Pr(σ(v)=0|OA) 1/n additive error for FPTAS for Z(G) marginal in poly(n)-time
w() = (u,v)E A(u),(v) vV b(v) marginal probability: 1/n additive error for marginal in poly(n)-time FPTAS for Z(G) Gibbs measure: 8Z() = w() Z(G) = {0,1}V partition function: Z(G) w() 8Z((v) = 0 | )

ferromagnetic: Byy >1 FPRAS:[Jerrum-Sinclair'93][Goldberg-Jerrum-Paterson'03] anti-ferromagnetic: By<1 hardcore model:B=0,y =1 [Weitz'06] Ising model:B=y [Sinclair-Srivastava-Thurley'12] (B,y,A)lies in the interior of FPTAS for graphs uniqueness region of A-regular tree of max-degree△ 2.5 -By=1 uiqueness threshold threshold achieved by heatbath random walk [Goldberg-Jerrum-Paterson'03] 15 [Li-Lu-Y.'12]: 0.5 0<B.y<1 FPTAS for arbitrary graphs 0 0.5 1.5 2.5
ferromagnetic: [Jerrum-Sinclair’93] > 1 FPRAS: [Goldberg-Jerrum-Paterson’03] anti-ferromagnetic: < 1 hardcore model: Ising model: = 0, = 1 = ∃ FPTAS for graphs of max-degree Δ (β, γ, λ) lies in the interior of uniqueness region of Δ-regular tree [Sinclair-Srivastava-Thurley’12] [Weitz’06] 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0< , <1 = 1 uniqueness threshold threshold achieved by heatbath random walk [Li-Lu-Y. ’12]: FPTAS for arbitrary graphs [Goldberg-Jerrum-Paterson’03]

anti-ferromagnetic: By<1 bounded△or△=∞ (B,y,A)lies in the interiors of uniqueness regions of d-regular trees for all ds A. 3 FPTAS for graphs of max-degree A [Sly-Sun'12] [Galanis-Stefankovic-Vigoda'12]: (B,y,A)lies in the interiors of non-uniqueness regions of a-regular trees for some d≤△. NR assuming FPRAS for graphs of max-degree A
anti-ferromagnetic: < 1 ∃ FPTAS for graphs of max-degree Δ (β, γ, λ) lies in the interiors of uniqueness regions of d-regular trees for all d ≤ Δ. ∄ FPRAS for graphs of max-degree Δ (β, γ, λ) lies in the interiors of non-uniqueness regions of d-regular trees for some d ≤ Δ. assuming NP ≠RP [Sly-Sun’12] [Galanis-Stefankovic-Vigoda’12]: bounded Δ or Δ=∞

Uniqueness Condition marginal ±exp(-) (d+1)-regular tree at root d =A(》 t reg. tree 元d=fa(cd) lf(元d)川<1 arbitrary boundary config
Uniqueness Condition (d+1)-regular tree reg. tree t arbitrary boundary config marginal at root ± exp(-t) fd(x) = x + 1 x + d x ˆ d = fd(ˆxd) |f d(ˆxd)| < 1

anti-ferromagnetic:B 1 bounded△or△=o Ju(x)= (》 d1 assuming NP≠RP 肀FPRAS for graphs of max--degree△
anti-ferromagnetic: 1 fd(x) = x + 1 x + d

Correlation Decay weak spatial mixing (WSM): oaB,TaB∈{0,1}B |Pr((v)=0|08B)-Pr(a(v)=0 TaB)I<exp(-S(t)) strong spatial mixing (SSM): Pr((v)=0 00B,n)-Pr(G(v)=0 TOB,A)I<exp(-2(t)) G Uniqueness: WSM in reg.tree
Correlation Decay strong spatial mixing (SSM): B B G v B, B {0, 1}B t weak spatial mixing (WSM): Uniqueness: WSM in reg. tree | 8Z((v) = 0 | B) 8Z((v) = 0 | B)| M`X((t)) | 8Z((v) = 0 | B, ) 8Z((v) = 0 | B, )| M`X((t))

Self-Avoiding Walk Tree due to Weitz(2006) G-(V,E T=TSAW(G,U) 3 6 preserve the marginal dist.at v on b bounded degree graphs: SSM> FPTAS
1 Self-Avoiding Walk Tree due to Weitz (2006) 1 2 3 4 5 6 2 4 4 1 4 4 6 5 5 6 4 3 3 5 6 5 6 4 1 G=(V,E) v T = T;)?(G, v) 6 6 6 6 6 preserve the marginal dist. at v SSM FPTAS on bounded degree graphs:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机科学》相关教学资源(参考文献)Assigning Tasks for Efficiency in Hadoop.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay on Planar Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial Mixing of Coloring Random Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial mixing and the connective constant - Optimal bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities.pdf
- 《计算机科学》相关教学资源(参考文献)Counting hypergraph matchings up to uniqueness threshold.pdf
- 《计算机科学》相关教学资源(参考文献)Convergence of MCMC and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)On Local Distributed Sampling and Counting.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic inference in probabilistic graphical models.pdf
- 中国计算机学会学术著作丛书:《对等网络——结构、应用与设计 Peer-to-Peer Network Structure, Application and Design》PDF电子书(正文,共九章).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Hot topics in ES.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case 4.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case Analysis - Use DARTS to Design a S/W System of Robot Controller.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 5 ask Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 4 Task Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 《计算机科学》相关教学资源(参考文献)Improved FPTAS for Multi-Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-probe proofs and nondeterministic cell-probe complexity.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-Probe Proofs.pdf
- 《计算机科学》相关教学资源(参考文献)Fast construction of overlay networks.pdf
- 《计算机科学》相关教学资源(参考文献)Ranged hash functions and the price of churn.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions.pdf
- 《计算机科学》相关教学资源(参考文献)Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma.pdf
- 《计算机科学》相关教学资源(参考文献)Distributed Algorithms for MCMC Sampling.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling & Counting for Big Data.pdf
- 《计算机科学》相关教学资源(参考文献)Introduction to the Correlation Decay Method.pdf
- 《计算机科学》相关教学资源(参考文献)Local Distributed Sampling from Locally-Defined Distribution.pdf
- 《计算机科学》相关教学资源(参考文献)Rectangle Inequalities for Data Structure Lower Bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling up to the Uniqueness Threshold.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Phase transition of hypergraph matchings.pdf
- 《计算机科学》相关教学资源:Beautiful Journey of Theoretical Computer Science(理论计算机科学的美丽旅程).pdf
- 《计算机科学》相关教学资源:Quest for Artificial Intelligence(人工智能探秘).pdf
- 《计算机科学》相关教学资源:The Magical Wild Animals(神奇的动物).pdf