《计算机科学》相关教学资源(参考文献)Phase transition of hypergraph matchings

Phase Transition of Hypergraph Matchings Yitong Yin Nanjing University Joint work with:Jinman Zhao (Nanjing Univ./U Wisconsin)
Phase Transition of Hypergraph Matchings Joint work with: Jinman Zhao (Nanjing Univ. / U Wisconsin) Yitong Yin Nanjing University

hardcore model monomer-dimer model undirected graph G=V,E) activity入 configurations: independent sets matchings M weight: w(D=入M w(M)=入M partition function: Z=1:independent sets in GW(D =EM:matchingsin G W(M) Gibbs distribution: u(D)=w(D/Z u(M)=w(M)/Z approximate counting: FPTAS/FPRAS for Z sampling:sampling from u within TV-distance s in time poly(n,log1/8)
hardcore model monomer-dimer model configurations: independent sets I matchings M weight: w(I) = λ|I| w(M) = λ|M| partition function: Z = ΣI:independent sets in G w(I) Z = ΣM:matchings in G w(M) Gibbs distribution: μ(I) = w(I) / Z μ(M) = w(M) / Z approximate counting: sampling: FPTAS/FPRAS for Z sampling from μ within TV-distance ε in time poly(n, log1/ε) G = (V,E) undirected graph λ λ λ λ λ λ λ activity λ λ λ

Decay of Correlation (Weak Spatial Mixing,WSM) Pr[v∈I|o] hardcore model: I-u →∞ (d+1)-regular tree ---0 boundary condition o:fixing leaves at level l to be occupied/unoccupied by I WSM:Pr[lv∈I|o]does not depend on o when l-→o uniqueness threshold:Xc= (d-1)d+1) ●入≤入c台VSM holds on(d+l)-regular tree台Gibbs measure is unique ·Veitz'06]:λe inapproximable unless NP=RP
(d+1)-regular tree ` ! 1 v boundary condition σ : fixing leaves at level l to be occupied/unoccupied by I Pr[v 2 I | ] Decay of Correlation c = dd (d 1)(d+1) hardcore model: (Weak Spatial Mixing, WSM) uniqueness threshold: • λ ≤ λc 㱻 WSM holds on (d+1)-regular tree 㱻 Gibbs measure is unique • [Weitz ‘06]: λ λc 㱺 inapproximable unless NP=RP WSM: Pr[v∈I | σ] does not depend on σ when l→∞ I ∼μ

Decay of Correlation (Weak Spatial Mixing,WSM) Pr[e∈M|o]e monomerdimer model: L→0∞ M-u regular tree 99…999 boundary condition o:fixing leaf-edges at level l to be occupied/unoccupied by M WSM:Pr[e∈M|]does not depend on o when /∞ WSM always holds+Gibbs measure is always unique [Jerrum,Sinclair'89]:FPRAS for all graphs [Bayati,Gamarnik,Katz,Nair,Tetali'08]:FPTAS for graphs with bounded max-degree
regular tree ` ! 1 boundary condition σ : fixing leaf-edges at level l to be occupied/unoccupied by M Decay of Correlation (Weak Spatial Mixing, WSM) • WSM always holds 㱻 Gibbs measure is always unique • [Jerrum, Sinclair ’89]: FPRAS for all graphs • [Bayati, Gamarnik, Katz, Nair, Tetali ’08]: FPTAS for graphs with bounded max-degree WSM: Pr[e∈M | σ] does not depend on σ when l→∞ monomer-dimer model: Pr[e 2 M | ] e M ∼μ

CSP (Constraint Satisfaction Problem) 2 degree degree =2 max-degree≤d ≤d matching constraint matchings: variables xi∈{0,1} (at-most-1)
CSP (Constraint Satisfaction Problem) 1 2 3 4 5 6 a b c d e f g 1 2 3 4 5 6 a b c d e f g matchings: variables xi 2 {0, 1} matching constraint (at-most-1) degree ≤ d degree = 2 max-degree ≤ d

CSP (Constraint Satisfaction Problem) degree degree =2 max-degree≤d ≤d 8 matching constraint matchings: variables xi∈{0,1} (at-most-1) matching constraint independent sets: variables i∈{0,l} (at-most-1) partition function: Z= 入川1 i∈{0,l}n satisfying all constraints
CSP (Constraint Satisfaction Problem) 1 2 3 4 5 6 a b c d e f g 1 2 3 4 5 6 a b c d e f g matchings: independent sets: variables xi 2 {0, 1} matching constraint (at-most-1) matching constraint (at-most-1) variables xi 2 {0, 1} max-degree ≤ d partition function: Z = X ~x2{0,1}n satisfying all constraints k~xk1 degree ≤ d degree = 2

CSP (Constraint Satisfaction Problem) deg≤d+l deg≤k+l c2 t> c☒ 4 c函 a Boolean at-most-1 variables constraints partition function: ∑ 入川1 i∈{0,1}n satisfying all constraints
CSP (Constraint Satisfaction Problem) Boolean variables deg ≤ d+1 deg ≤ k+1 x1 x2 x3 x4 x5 c1 c2 c3 c4 c5 c6 c7 Z = X ~x2{0,1}n satisfying all constraints k~ xk1 partition function: at-most-1 constraints

Hypergraph matching hypergraph =(V,E) vertex set V hyperedge e∈E,eCV a matching is an subset MCE of disjoint hyperedges partition .U] Zλ(H)= ∑ λM川 .U4 i. functions: M:matching of H ,5 .29 8 es .6 e2 es Gibbs λXM distribution: u(M)= Z(孔)
v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 v1 v2 v3 v4 v5 v6 v7 v8 v9 e1 e2 e3 e4 e5 Hypergraph matching Z(H) = X M: matching of H |M| hypergraph H = (V,E) vertex set V hyperedge e 2 E, e ⇢ V a matching is an subset M⊂E of disjoint hyperedges µ(M) = |M| Z(H) partition functions: Gibbs distribution:

matchings in hypergraphs of max-degree sk+1 and max-edge-sizes d+1 matching 01 .4 th2. incidence graph primal: .5 ,28 e3 6 9 e2 e3 5 6 dual: CSP defined by matching(packing)constraint 7 06 independent set independent sets in hypergraphs of max-degree sd+1 and max-edge-size sk+1 independent sets:a subset of non-adjacent vertices (to be distinguished with:vertex subsets containing no hyperedge as subset)
v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 v1 v2 v3 v4 v5 v6 v7 v8 v9 e1 e2 e3 e4 e5 matchings in hypergraphs of max-degree ≤ k+1 and max-edge-size ≤ d+1 v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 * * * * * * * * * * * * * * v5 * v6 * e2 * v1 * v2 * e1 * v3 * v4 * e5 * e3 * e4 * v7 * v8 * v9 * incidence graph primal: dual: v3 e1 v1 v2 v4 v8 v7 e2 e3 e5 v9 v6 v5 e4 * * * * * * * * * * * * * * v5 * v6 * e2 * v1 * v2 * e1 * v3 * v4 * e5 * e3 * e4 * v7 * v8 * v9 * matching independent set CSP defined by matching(packing) constraint independent sets in hypergraphs of max-degree ≤ d+1 and max-edge-size ≤ k+1 independent sets: a subset of non-adjacent vertices (to be distinguished with: vertex subsets containing no hyperedge as subset)

Known results deg≤d+l ☑deg≤k+l C2 independent sets of hypergraphs of max-degree≤d+1 and max-edge-size≤k+l C4 cs partition function: Z= 入川1 元∈{0,1}n satisfying Boolean at-most-1 all constraints variables constraints Classification of approximability in terms of )d,k? ●k=l:hardcore model d=1:monomer-dimer model ●forλ=1: [Dudek,Karpinski,Rucinski,Szymanska 2014]:FPTAS when d=2,k<2 [Liu and Lu 2015]FPTAS when d=2,k<3
Known results • k=1: hardcore model • d=1: monomer-dimer model •for λ=1: •[Dudek, Karpinski, Rucinski, Szymanska 2014]: FPTAS when d=2, k≤2 •[Liu and Lu 2015] FPTAS when d=2, k≤3 Boolean variables deg ≤ d+1 deg ≤ k+1 x1 x2 x3 x4 x5 c1 c2 c3 c4 c5 c6 c7 at-most-1 constraints Z = X ~x2{0,1}n satisfying all constraints k~ xk1 partition function: independent sets of hypergraphs of max-degree ≤ d+1 and max-edge-size ≤ k+1 Classification of approximability in terms of λ, d, k ?
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling up to the Uniqueness Threshold.pdf
- 《计算机科学》相关教学资源(参考文献)Rectangle Inequalities for Data Structure Lower Bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Local Distributed Sampling from Locally-Defined Distribution.pdf
- 《计算机科学》相关教学资源(参考文献)Introduction to the Correlation Decay Method.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling & Counting for Big Data.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Distributed Algorithms for MCMC Sampling.pdf
- 《计算机科学》相关教学资源(参考文献)Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions.pdf
- 《计算机科学》相关教学资源(参考文献)Ranged hash functions and the price of churn.pdf
- 《计算机科学》相关教学资源(参考文献)Fast construction of overlay networks.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-Probe Proofs.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-probe proofs and nondeterministic cell-probe complexity.pdf
- 《计算机科学》相关教学资源(参考文献)Improved FPTAS for Multi-Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Assigning Tasks for Efficiency in Hadoop.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay on Planar Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay in Spin Systems.pdf
- 《计算机科学》相关教学资源:Beautiful Journey of Theoretical Computer Science(理论计算机科学的美丽旅程).pdf
- 《计算机科学》相关教学资源:Quest for Artificial Intelligence(人工智能探秘).pdf
- 《计算机科学》相关教学资源:The Magical Wild Animals(神奇的动物).pdf
- 《计算机科学》相关教学资源(参考文献)Counting with Bounded Treewidth.pdf
- 《计算机科学》相关教学资源(参考文献)Decay of Correlation in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)POMP:Protocol Oblivious SDN Programming with Automatic Multi-Table Pipelining.pdf
- 《计算机科学》相关教学资源(参考文献)Progress of Concurrent Objects with Partial Methods.pdf
- 《计算机科学》相关教学资源(参考文献)A Practical Verification Framework for Preemptive OS Kernels.pdf
- 《计算机科学》相关教学资源(参考文献)A Program Logic for Concurrent Objects under Fair Scheduling.pdf
- 《计算机科学》相关教学资源(参考文献)Compositional Verification of Termination-Preserving Refinement of Concurrent Programs.pdf
- 《计算机科学》相关教学资源(参考文献)Rely-Guarantee-Based Simulation for Compositional Verification of Concurrent Program Transformations.pdf
- 《计算机科学》相关教学资源(参考文献)Characterizing Progress Properties of Concurrent Objects via Contextual Refinements.pdf
- 《计算机科学》相关教学资源(参考文献)Modular Verification of Linearizability with Non-Fixed Linearization Points.pdf
- 《计算机科学》相关教学资源(参考文献)A Rely-Guarantee-Based Simulation for Verifying Concurrent Program Transformations.pdf
- 《计算机科学》相关教学资源(参考文献)Deny-Guarantee Reasoning.pdf
- 《计算机科学》相关教学资源(参考文献)Technical Report TTIC-TR-2008-1(Local Rely-Guarantee Reasoning).pdf
- 《计算机科学》相关教学资源(PPT课件讲稿)On the Relationship between Concurrent Separation Logic and Assume-Guarantee Reasoning.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)Certifying Low-Level Programs with Hardware Interrupts and Preemptive Threads.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)An Open Framework for Foundational Proof-Carrying Code.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)Modular Verification of Assembly Code with Stack-Based Control Abstractions.ppt