《计算机科学》相关教学资源(参考文献)What can be sampled locally?

What can be sampled locally? Yitong Yin Nanjing University Joint work with:Weiming Feng,Yuxin Sun
What can be sampled loca!y? Yitong Yin Nanjing University Joint work with: Weiming Feng, Yuxin Sun

Local Computation "What can be computed locally?" [Noar,Stockmeyer,STOC'93,SICOMP'95] the LOCAC model [Linial '87]: ● Communications are synchronized. In each round:each node can send messages of unbounded sizes to all its neighbors. Local computations are free. 0 Complexity:of rounds to terminate in the worst case. In t rounds:each node can collect information up to distance t
Local Computation • Communications are synchronized. • In each round: each node can send messages of unbounded sizes to all its neighbors. • Local computations are free. • Complexity: # of rounds to terminate in the worst case. • In t rounds: each node can collect information up to distance t. the LOCAL model [Linial ’87]: “What can be computed locally?” [Noar, Stockmeyer, STOC’93, SICOMP’95]

Local Computation the LOCAC model [Linial '87]: In t rounds:each node can collect information up to distance t. Locally Checkable Labeling (LCL)problems [Noar,Stockmeyer 293]: CSPs with local constraints. Construct a feasible solution: vertex/edge coloring,Lovasz local lemma Find local optimum:MIS,MM Approximate global optimum: maximum matching,minimum vertex cover,minimum dominating set network G(E) Q:"What locally definable problems are locally computable?" by local constraints in O(1)rounds or in small number of rounds
Local Computation • CSPs with local constraints. • Construct a feasible solution: vertex/edge coloring, Lovász local lemma • Find local optimum: MIS, MM • Approximate global optimum: maximum matching, minimum vertex cover, minimum dominating set Locally Checkable Labeling (LCL) problems [Noar, Stockmeyer ’93] : Q: “What locally definable problems are locally computable?” the LOCAL model [Linial ’87]: network G(V,E) • In t rounds: each node can collect information up to distance t. by local constraints in O(1) rounds or in small number of rounds

"What can be sampled locally?" CSP with local constraints network G(E): on the network: ●proper q-coloring; ●independent set; ● Sample a uniform random feasible solution: distributed algorithms (in the LOCAC model) Q:"What locally definable joint distributions are locally sample-able?
“What can be sampled locally?” network G(V,E): • CSP with local constraints on the network: • proper q-coloring; • independent set; • Sample a uniform random feasible solution: • distributed algorithms (in the LOCAL model) Q: “What locally definable joint distributions are locally sample-able?

Markoy Random Fields (MRF) Each vertex corresponds to a network G(E): variable with finite domain [g]. ● Each edge e=(u,v)EE imposes a weighted binary constraint: X∈[q] ⑨bv Ae:[gl2→R≥0 。Each vertex ve∈imposes a weighted unary constraint: b:[gl→R≥o Gibbs distribution u:∀o∈[g]' X∈[a]V follows u L(o)Ae(ou,0)b() e=(u,v)∈E u∈V
Markov Random Fields network G(V,E): • Each vertex corresponds to a variable with finite domain [q]. • Each edge e=(u,v)∈E imposes a weighted binary constraint: • Each vertex v∈E imposes a weighted unary constraint: • Gibbs distribution µ : ∀σ∈[q]V Ae : [q] 2 ! R0 bv : [q] ! R0 µ() / Y e=(u,v)2E Ae(u, v) Y v2V bv(v) Ae bv Xv∈[q] u v (MRF) X ~ 2 [q] V follows µ

Markoy Random Fields (MRF) Gibbs distribution u:Voe[g] network GE): H(o)Ae(ou,)b(o) e=(u,w)∈E ●proper q-coloring: X∈[q] ⑨bv 10 1 independent set: 4-且司-日 X∈[aly follows u local conflict colorings: [Fraigniaud,Heinrich,Kosowski FOCS'16] Ae∈{0,1}9×9,bm∈{0,1}9
Markov Random Fields network G(V,E): Ae bv Xv∈[q] u v X ~ 2 [q] V follows µ (MRF) • Gibbs distribution µ : ∀σ∈[q]V µ() / Y e=(u,v)2E Ae(u, v) Y v2V bv(v) • proper q-coloring: Ae = 2 6 6 6 4 0 0 ... 0 3 7 7 7 5 1 1 bv = 2 6 4 1 . . . 1 3 7 5 • independent set: bv = 1 1 Ae = 1 1 1 0 • local conflict colorings: [Fraigniaud, Heinrich, Kosowski FOCS’16] Ae 2 {0, 1}q⇥q, bv 2 {0, 1}q

A Motivation: Distributed Machine Learning ●Data are stored in a distributed system. 0 ·Sampling from a probabilistic graphical model (e.g.the Markov random field))by distributed algorithms
A Motivation: Distributed Machine Learning • Data are stored in a distributed system. • Sampling from a probabilistic graphical model (e.g. the Markov random field) by distributed algorithms

Glauber Dynamics starting from an arbitrary Xo E [g] G(V,E) transition for XX+1: pick a uniform random vertex v; resample X(v)according to the marginal distribution induced by u at vertex v conditioning on X(N(v)); marginal distribution: bo()IIEN()A(.)(Xu:) PrlX,=z|Xwol=ehb.IexoAeX, MRF:o∈g', u(o)xΠAe(o,o)Πb(a) v∈V stationary distribution:u e=(u,v)∈E mixing time::Tmix=max min{t|drv(Xt,))≤2e} Xo
Glauber Dynamics G(V,E): pick a uniform random vertex v; resample X(v) according to the marginal distribution induced by µ at vertex v conditioning on Xt(N(v)); starting from an arbitrary X0 ∈ [q]V transition for Xt → Xt+1 : marginal distribution: Pr[Xv = x | XN(v)] = bv(x) Q u2N(v) A(u,v)(Xu, x) P y2[q] bv(y) Q u2N(v) A(u,v)(Xu, y) Ae bv v µ() / Y e=(u,v)2E Ae(u, v) Y v2V bv(v) MRF: 8 2 [q] V , stationary distribution: µ mixing time: ⌧mix = max X0 min t | dTV(Xt, µ) 1 2e

Mixing of Glauber Dynamics influence matrix [Po,u,uEv: Pv.u:max discrepancy (in total variation distance)of marginal distributions at v caused by any pair o,t of boundary conditions that differ only at u Dobrushin's condition: contraction of one-step Ipl=∑Pee≤1-e optimal coupling in the worst u∈V case w.r.t.Hamming distance Theorem (Dobrushin'70:Salas,Sokal'97): Dobrushin's Tmix =O(nlogn) condition for Glauber dynamics for g-coloring: Dobrushin's 92(2+ε)△ condition △=max-degree
Mixing of Glauber Dynamics for q-coloring: Dobrushin’s q≥(2+ε)Δ condition Δ = max-degree u v influence matrix {⇢v,u }v,u2V : ρv,u: max discrepancy (in total variation distance) of marginal distributions at v caused by any pair σ,τ of boundary conditions that differ only at u Dobrushin’s condition: k⇢k1 = max v2V X u2V ⇢v,u 1 ✏ contraction of one-step optimal coupling in the worst case w.r.t. Hamming distance Theorem (Dobrushin ’70; Salas, Sokal ’97): Dobrushin’s condition for Glauber dynamics ⌧mix = O (n log n)

Parallelization Glauber dynamics: starting from an arbitrary Xo E [g] G(V,E): transition for XX+1: pick a uniform random vertex v; resample X(v)according to the marginal distribution induced by u at vertex v conditioning on Xi(N(v)); Parallelization: ● Chromatic scheduler [folklore][Gonzalez et al.,AISTAT'11]: Vertices in the same color class are updated in parallel. "Hogwild!"[Niu,Recht,Re,Wright,NIPS'11]De Sa,Olukotun,Re,ICML16]: All vertices are updated in parallel,ignoring concurrency issues
Parallelization G(V,E): v Glauber dynamics: Parallelization: • Chromatic scheduler [folklore] [Gonzalez et al., AISTAT’11]: Vertices in the same color class are updated in parallel. • “Hogwild!” [Niu, Recht, Ré, Wright, NIPS’11][De Sa, Olukotun, Ré, ICML’16]: All vertices are updated in parallel, ignoring concurrency issues. pick a uniform random vertex v; resample X(v) according to the marginal distribution induced by µ at vertex v conditioning on Xt(N(v)); starting from an arbitrary X0 ∈ [q]V transition for Xt → Xt+1 :
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机科学》相关教学资源(参考文献)Sampling up to the Uniqueness Threshold.pdf
- 《计算机科学》相关教学资源(参考文献)Rectangle Inequalities for Data Structure Lower Bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Local Distributed Sampling from Locally-Defined Distribution.pdf
- 《计算机科学》相关教学资源(参考文献)Introduction to the Correlation Decay Method.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling & Counting for Big Data.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Distributed Algorithms for MCMC Sampling.pdf
- 《计算机科学》相关教学资源(参考文献)Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions.pdf
- 《计算机科学》相关教学资源(参考文献)Ranged hash functions and the price of churn.pdf
- 《计算机科学》相关教学资源(参考文献)Fast construction of overlay networks.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-Probe Proofs.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-probe proofs and nondeterministic cell-probe complexity.pdf
- 《计算机科学》相关教学资源(参考文献)Improved FPTAS for Multi-Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Assigning Tasks for Efficiency in Hadoop.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay on Planar Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial Mixing of Coloring Random Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial mixing and the connective constant - Optimal bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Phase transition of hypergraph matchings.pdf
- 《计算机科学》相关教学资源:Beautiful Journey of Theoretical Computer Science(理论计算机科学的美丽旅程).pdf
- 《计算机科学》相关教学资源:Quest for Artificial Intelligence(人工智能探秘).pdf
- 《计算机科学》相关教学资源:The Magical Wild Animals(神奇的动物).pdf
- 《计算机科学》相关教学资源(参考文献)Counting with Bounded Treewidth.pdf
- 《计算机科学》相关教学资源(参考文献)Decay of Correlation in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)POMP:Protocol Oblivious SDN Programming with Automatic Multi-Table Pipelining.pdf
- 《计算机科学》相关教学资源(参考文献)Progress of Concurrent Objects with Partial Methods.pdf
- 《计算机科学》相关教学资源(参考文献)A Practical Verification Framework for Preemptive OS Kernels.pdf
- 《计算机科学》相关教学资源(参考文献)A Program Logic for Concurrent Objects under Fair Scheduling.pdf
- 《计算机科学》相关教学资源(参考文献)Compositional Verification of Termination-Preserving Refinement of Concurrent Programs.pdf
- 《计算机科学》相关教学资源(参考文献)Rely-Guarantee-Based Simulation for Compositional Verification of Concurrent Program Transformations.pdf
- 《计算机科学》相关教学资源(参考文献)Characterizing Progress Properties of Concurrent Objects via Contextual Refinements.pdf
- 《计算机科学》相关教学资源(参考文献)Modular Verification of Linearizability with Non-Fixed Linearization Points.pdf
- 《计算机科学》相关教学资源(参考文献)A Rely-Guarantee-Based Simulation for Verifying Concurrent Program Transformations.pdf
- 《计算机科学》相关教学资源(参考文献)Deny-Guarantee Reasoning.pdf
- 《计算机科学》相关教学资源(参考文献)Technical Report TTIC-TR-2008-1(Local Rely-Guarantee Reasoning).pdf
- 《计算机科学》相关教学资源(PPT课件讲稿)On the Relationship between Concurrent Separation Logic and Assume-Guarantee Reasoning.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)Certifying Low-Level Programs with Hardware Interrupts and Preemptive Threads.ppt