《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay on Planar Graphs

Approximate Counting via correlation Decay on Planar Graphs Yitong Yin Nanjing University Chihao Zhang Shanghai Jiaotong University
Approximate Counting via Correlation Decay on Planar Graphs Yitong Yin Nanjing University Chihao Zhang Shanghai Jiaotong University

Holant Problems (Valiant 2004) instance: =(G(V,E),fuvEv) graph G=(V,目 edges:variables (domain [q]) vertices:constraints(arity=degree) symmetric f:[g]deg()C configuration (solution,coloring,..):[ holant(counting): holant(2)=>II fu (lE()) o∈[g]Ev∈V #matchings: q-2 E{0,1f=AT-MOST-ONE
Holant Problems edges: variables (domain [q]) vertices: constraints (arity=degree) graph G=(V,E) holant (counting): PWTIV\() = [q]E vV fv |E(v) = (G(V,E), {fv}vV ) fv (Valiant 2004) configuration (solution, coloring, ...): instance: fv : [q] LMO(v) C #matchings: q=2 {0, 1} fv At-Most-One E [q] E symmetric

Holant problem:Holant(9,F) graph family function family mptR-G,e)wm{食 output:holant()=>f(()) o∈[g]Ev∈V spin system /graph homomorphism(G.H.): F={f:[ga→C,d≤2}U{=} ●S,#VC .#q-colorings,#H-colorings .hardcore/lsing/Potts models,MRF G=(V,目 spin model holant
Holant problem: PWTIV\() = [q]E vV fv |E(v) = (G(V,E), {fv}vV ) 0WTIV\(G, F) graph family function family input: output: G G fv F with F = {f : [q] d C, d 2} {=} spin system / graph homomorphism (G.H.): • #IS, #VC • #q-colorings, #H-colorings • hardcore/Ising/Potts models, MRF f G=(V,E) V E = = = = f f f f f spin model holant

Holant Problems Holant problem:Holant(G,F) graph family function family characterize the tractability of Holant(g,F)by g and F Bad news:for general/planar G,almost all nontrivial F:#P-hard (Dyer-Greenhill'00,Bulatov-Grohe'05,Dyer-Goldberg'07,Bulatov'08,Goldberg-Grohe-Jerrum'10,Cai-Chen'10, Cai-Chen-Lu'10,Cai-Lu-Xia'10,Dyer-Richerby'10,Dyer-Richerby'11,Cai-Chen'12,Cai-Lu-Xia'13) Good news:tractable if g is tree,F is Spin or Matching (arity≤2'and=)(At-Most-One) Our result: g is planar (locally like a tree) F is regular li/nEPFAS) correlation decay local info is enough)
Holant Problems Holant problem: 0WTIV\(G, F) graph family function family Bad news: for general/planar , almost all nontrivial : #P-hard (Dyer-Greenhill’00, Bulatov-Grohe’05, Dyer-Goldberg’07, Bulatov’08, Goldberg-Grohe-Jerrum’10, Cai-Chen’10, Cai-Chen-Lu’10, Cai-Lu-Xia’10, Dyer-Richerby’10, Dyer-Richerby’11, Cai-Chen’12, Cai-Lu-Xia’13) G F Good news: tractable if is G tree, is F Spin or Matching (arity≤2 and =) (At-Most-One) Our result: correlation decay G is planar F is regular (local info is enough) (locally like a tree) (like spin/matching) FPTAS characterize the tractability of by and 0WTIV\(G, F) G F

Gibbs measure =(G(V;E),{fu}vEv) f:[g]ego)→R≥o holant(()=Πf,(oE() o∈[glEv∈V Gibbs measure:Pr()= Πevf(oE(w) holant marginal probability:E[a)4 ACE Pr(a(e)=cA) self compute reduction FPTAS for Pr(o(e)=c|TA)±是 holant(S) in time poly(n)
Gibbs Measure PWTIV\() = [q]E vV fv |E(v) = (G(V,E), {fv}vV ) Gibbs measure: marginal probability: fv : [q] LMO(v) R0 8Z() = vV fv(|E(v)) PWTIV\ A E FPTAS for PWTIV\() selfreduction 8Z((e) = c | A) A [q] A compute in time 8Z((e) = c | A) ± 1 n XWTa (n)

Correlation Decay strong spatial mixing(SSM):VoB E[a]5 Pr(a(e)=cA)-Pr(o(e)=cA,OB) ≤poly(IVI)exp(-2(t) SSM:sufficiency of local information for approx.of Pr((e)=cA) efficiency of local computation (FPTAS) such implication was known for: g-2,F is Spin (Weitz6) Matching (Bayati-Gamarnik-Katz-Nair-Tetali'08)
Correlation Decay strong spatial mixing (SSM): SSM: sufficiency of local information B G e t A XWTa(|V |) M`X((t)) B [q] B ? for approx. of efficiency of local computation 8Z((e) = c | A) q=2, is F Spin (Weitz’06) Matching (Bayati-Gamarnik-Katz-Nair-Tetali’08) such implication was known for: (FPTAS) 8Z((e) = c | A) 8Z((e) = c | A, B)

Regularity Pinning: symmetric f:[gla→cT∈gk Pin(f)=g where g:[g]d-kC Vo E [q]d-k,g(o)=f(o1,...;od-k;TI,...,Tk) when q-2 write f=[fo,f1,...,fa] where f;=f(a)thatol1 =i a family F of symmetric functions is regular if ヨa finite C s.t.Vf∈F,fisC-regular fo.a-1 fal examples:bounded-arity d-k+1 equality [1,0,...01] counterexample:0.1.0..... at-most-one [1,1,0,...,0] cyclic [a,b.c,a,b.c,.]
dk+1 Regularity 8QV (f) = g g : [q] dk C f : [q] symmetric d C where [q] g() = f(1,..., dk, 1,..., k) dk , [q] k Pinning: f : [q] is C-regular if symmetric d C 8QV (f) | [q] k 0 k d, C a family of symmetric functions is F regular if a finite C s.t. f F, f is C-regular counterexample: [0,..., 0 d 2 , 1, 0,..., 0 d 2 ] [f0, f1, f2,...,fi,...,fd1, fd] examples: equality [1,0,...,0,1] at-most-one [1,1,0,...,0] cyclic [a,b,c,a,b,c,...] bounded-arity when q=2 write f = [f0, f1,...,fd] where fi = f() that 1 = i

Holant can be computed F is Spin (junction-tree BP) in time poly(n)ifhas bounded-arity (tensor network,Markov-Shi'09) Theorem I If F is regular,then holant(G,{fvvF) can be computed in time poly(.(treewidth(G)) Theorem II If g is planar (apex-minor-free),F is regular,then SSM FPTAS for Holant(g,F)
0WTIV\(G, F) Theorem II If G is planar (apex-minor-free), F is regular, then SSM FPTAS for XWTa(n) · 2 if \_ in time F is Spin (junction-tree BP) has bounded-arity (tensor network, Markov-Shi’09) F Holant can be computed If F is regular, then PWTIV\(G, {fv}vV F) can be computed in time Theorem I XWTa(|V |) · 2O(\ZMM_QL\P(G))

Theorem I If F is regular,then holant(G,{fvvF) can be computed in time poly(.2(treewidth(G)) SSM: Pr(a(e)=clA)-Pr(o(e)=clA,OB)<poly(V)exp(-t) compute Pr(g(e)=c|TA)±是 FPTAS in time poly(n) for Holant Theorem(Demaine-Hajiaghayi'04) For apex-minor-free graphs, treewidth of t-ball is O(). Theorem II If g is planar (apex-minor-free),F is regular,then SSM FPTAS for Holant(g,F)
0WTIV\(G, F) Theorem II If G is planar (apex-minor-free), F is regular, then SSM FPTAS for SSM: G B e t A 8Z((e) = c | A) 8Z((e) = c | A, B) XWTa(|V |) M`X(t) Theorem (Demaine-Hajiaghayi’04) For apex-minor-free graphs, treewidth of t-ball is O(t). compute in time 8Z((e) = c | A) ± 1 n XWTa (n) FPTAS for Holant If F is regular, then PWTIV\(G, {fv}vV F) can be computed in time Theorem I XWTa(|V |) · 2O(\ZMM_QL\P(G))

Theorem I If F is regular,then holant(G,{fvvF) can be computed in time poly().2(treewidth(G)) tree-decomposition: B a tree of"bags"of vertices: I.Every vertex is in some bag. E 2.Every edge is in some bag. 3.If two bags have a same vertex, A B B then all bags in the path between them have that vertex. width:max bag size-1 treewidth:width of optimal H tree decomposition
tree-decomposition: 1.Every vertex is in some bag. 2.Every edge is in some bag. 3.If two bags have a same vertex, then all bags in the path between them have that vertex. a tree of “bags” of vertices: width: max bag size -1 treewidth: width of optimal tree decomposition If F is regular, then PWTIV\(G, {fv}vV F) can be computed in time Theorem I XWTa(|V |) · 2O(\ZMM_QL\P(G))
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial Mixing of Coloring Random Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial mixing and the connective constant - Optimal bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities.pdf
- 《计算机科学》相关教学资源(参考文献)Counting hypergraph matchings up to uniqueness threshold.pdf
- 《计算机科学》相关教学资源(参考文献)Convergence of MCMC and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)On Local Distributed Sampling and Counting.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic inference in probabilistic graphical models.pdf
- 中国计算机学会学术著作丛书:《对等网络——结构、应用与设计 Peer-to-Peer Network Structure, Application and Design》PDF电子书(正文,共九章).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Hot topics in ES.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case 4.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case Analysis - Use DARTS to Design a S/W System of Robot Controller.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 5 ask Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 4 Task Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 《计算机科学》相关教学资源(参考文献)Assigning Tasks for Efficiency in Hadoop.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Improved FPTAS for Multi-Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-probe proofs and nondeterministic cell-probe complexity.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-Probe Proofs.pdf
- 《计算机科学》相关教学资源(参考文献)Fast construction of overlay networks.pdf
- 《计算机科学》相关教学资源(参考文献)Ranged hash functions and the price of churn.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions.pdf
- 《计算机科学》相关教学资源(参考文献)Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma.pdf
- 《计算机科学》相关教学资源(参考文献)Distributed Algorithms for MCMC Sampling.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling & Counting for Big Data.pdf
- 《计算机科学》相关教学资源(参考文献)Introduction to the Correlation Decay Method.pdf
- 《计算机科学》相关教学资源(参考文献)Local Distributed Sampling from Locally-Defined Distribution.pdf
- 《计算机科学》相关教学资源(参考文献)Rectangle Inequalities for Data Structure Lower Bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling up to the Uniqueness Threshold.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Phase transition of hypergraph matchings.pdf
- 《计算机科学》相关教学资源:Beautiful Journey of Theoretical Computer Science(理论计算机科学的美丽旅程).pdf