《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay in Spin Systems

Approximate Counting via correlation Decay inSpin Systems Yitong Yin Nanjing University Joint work with Liang Li (Peking U)and Pinyan Lu (MSRA)
Approximate Counting via Correlation Decay in Spin Systems Yitong Yin Nanjing University Joint work with Liang Li (Peking U) and Pinyan Lu (MSRA)

Two-State Spin System graph G=V,E)2 states {0,1 configuration V->10,1) contributions of local interactions: 0-0 weight: w(o)=contribution(e) e∈E
Two-State Spin System 2 states {0,1} configuration : V {0, 1} graph G=(V,E) contributions of local interactions: weight: w() = eE KWV\ZQJ]\QWV(e) 1

Two-State Spin System graph G=(V,E)2 states {0,1} configuration o:V→{0,l} A= [=眼 contributions of local interactions: 020 weight: w(o)=A(),o(u) (u,v)∈E
Two-State Spin System A = A0,0 A0,1 A1,0 A1,1 = 1 1 2 states {0,1} configuration : V {0, 1} graph G=(V,E) contributions of local interactions: weight: w() = 1 (u,v)E A(u),(v)

Two-State Spin System graph G=(V,E)2 states {0,1) configuration o:V→{0,l} A- := weight:w()=]I A().() (u,v)∈E w(o) Gibbs measure: 4(o)= ZAG partition function: Z4(G)=〉(o) o∈{0,1}V
Two-State Spin System A = A0,0 A0,1 A1,0 A1,1 = 1 1 graph G=(V,E) 2 states {0,1} weight: w() = (u,v)E A(u),(v) Gibbs measure: µ() = w() ZA(G) ZA(G) = {0,1}V partition function: w() configuration : V {0, 1}

Partition Function graph G=V,E)2 states (0,1 configuration o:V→{0,l} A= partition function: ZA(G)=∑ ΠA,a) o∈{0,1}V(u,w)∈E B=0,y=1 independent set vertex cover weighted Boolean CSP with one symmetric relation
Partition Function A = A0,0 A0,1 A1,0 A1,1 = 1 1 graph G=(V,E) 2 states {0,1} ZA(G) = {0,1}V (u,v)E A(u),(v) partition function: = 0, = 1 # independent set # vertex cover configuration : V {0, 1} weighted Boolean CSP with one symmetric relation

Approximate Counting fix A= partition function: zA(G)=∑Π Aa(u),o(v) o∈{0,1}V(u,w)∈E is a well-define computational problem poly-time computable if By=1 or (B,Y)=(0,0) #P-hard if otherwise Approximation!
Approximate Counting ZA(G) = {0,1}V (u,v)E A(u),(v) partition function: A = A0,0 A0,1 A1,0 A1,1 = 1 1 fix is a well-define computational problem poly-time computable if = 1 or (, ) = (0, 0) #P-hard if otherwise Approximation!

US93] Jerrum-Sinclair'93 [GJP03]Goldberg-Jerrum-Paterson'03 Y 3 ferromagnetic 2-state spin 2.5 87=1 FPRAS [GJP03] ferromagnetic Ising Model 1.5 anti- .FPRAS [JS93] ferromagnetic 1.11017 1 0≤B,Y≤1 0.5 no FPRAS unless NPCRP FPRAS [GJP03] [GJP03] 、heat-bath 8 0.5 1 1.5 2 2.5 3
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0< , <1 = 1 uniqueness threshold threshold achieved by heatbath random walk 1.11017 0 , 1 ferromagnetic Ising Model ferromagnetic 2-state spin FPRAS [JS93] FPRAS [GJP03] FPRAS [GJP03] heat-bath no FPRAS unless NP⊆RP [GJP03] antiferromagnetic Goldberg-Jerrum-Paterson’03 Jerrum-Sinclair’93 [GJP03] [JS93]

Uniqueness Threshold 1.11017 1 0四 @(+ d 产0四 1.11017 元=f(金) 四 B Y f'()川<1 W 0 0 W 0 for all d B 0≤B<1<Y
1.11017 Uniqueness Threshold f(x) = x + 1 x + d x ˆ = f(ˆx) |f (ˆx)| < 1 0 < 1 < for all d

Our Result Y 3 2.5 ←—3y=1 2 1.5 ------- 1.11017 0≤B,Y≤1 0.5 FPTAS 8 0.5 1 1.5 2 2.5 3 B
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0< , <1 = 1 uniqueness threshold threshold achieved by heatbath random walk 1.11017 0 , 1 Our Result FPTAS

Marginal Distribution weight:w()=A(u).() (u,v)∈E w(o) Gibbs measure: L()=ZA(G) Z4(G)=∑ ΠA(w,o) o∈{0,1V(u,w)∈E marginal distributions at vertex v: p=Pr [o(v)=0] ΛCVoA∈{0,1}A fixed v∈A free vA Pr [o(v)=01(A)=OA]
Marginal Distribution weight: w() = (u,v)E A(u),(v) Gibbs measure: µ() = w() ZA(G) ZA(G) = {0,1}V (u,v)E A(u),(v) pv = 8Z µ [(v) = 0] p v = 8Z µ [(v) = 0 | () = ] {0, 1} marginal distributions at vertex v: V fixed v free v
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机科学》相关教学资源(参考文献)Spatial Mixing of Coloring Random Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Spatial mixing and the connective constant - Optimal bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Simple average-case lower bounds for approximate near-neighbor from isoperimetric inequalities.pdf
- 《计算机科学》相关教学资源(参考文献)Counting hypergraph matchings up to uniqueness threshold.pdf
- 《计算机科学》相关教学资源(参考文献)Convergence of MCMC and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)On Local Distributed Sampling and Counting.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic inference in probabilistic graphical models.pdf
- 中国计算机学会学术著作丛书:《对等网络——结构、应用与设计 Peer-to-Peer Network Structure, Application and Design》PDF电子书(正文,共九章).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Hot topics in ES.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case 4.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case Analysis - Use DARTS to Design a S/W System of Robot Controller.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 5 ask Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 4 Task Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Random Rounding.pdf
- 《计算机科学》相关教学资源(参考文献)Approximate Counting via Correlation Decay on Planar Graphs.pdf
- 《计算机科学》相关教学资源(参考文献)Assigning Tasks for Efficiency in Hadoop.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Improved FPTAS for Multi-Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-probe proofs and nondeterministic cell-probe complexity.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-Probe Proofs.pdf
- 《计算机科学》相关教学资源(参考文献)Fast construction of overlay networks.pdf
- 《计算机科学》相关教学资源(参考文献)Ranged hash functions and the price of churn.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions.pdf
- 《计算机科学》相关教学资源(参考文献)Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma.pdf
- 《计算机科学》相关教学资源(参考文献)Distributed Algorithms for MCMC Sampling.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling & Counting for Big Data.pdf
- 《计算机科学》相关教学资源(参考文献)Introduction to the Correlation Decay Method.pdf
- 《计算机科学》相关教学资源(参考文献)Local Distributed Sampling from Locally-Defined Distribution.pdf
- 《计算机科学》相关教学资源(参考文献)Rectangle Inequalities for Data Structure Lower Bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling up to the Uniqueness Threshold.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)Phase transition of hypergraph matchings.pdf