中国高校课件下载中心 》 教学资源 》 大学文库

《计算机科学》相关教学资源(参考文献)Spatial Mixing of Coloring Random Graphs

文档信息
资源类别:文库
文档格式:PDF
文档页数:20
文件大小:2.77MB
团购合买:点击进入团购
内容简介
《计算机科学》相关教学资源(参考文献)Spatial Mixing of Coloring Random Graphs
刷新页面文档预览

Spatial Mixing of Coloring Random Graphs Yitong Yin Nanjing University

Spatial Mixing of Coloring Random Graphs Yitong Yin Nanjing University

Colorings undirected G(V,E) max-degree: q colors: d 口 temporal mixing of approximately counting Glauber dynamics or sampling almost uniform 0:2→11/6 proper q-colorings of G [Jerrum'95] [Vigoda'99] [Salas-Sokal'97] [Bubley-Dyer'97] when q≥cd+B spatial mixing of conjecture:x=1 Gibbs measure

Colorings undirected G(V,E) approximately counting or sampling almost uniform proper q-colorings of G max-degree: q colors: d when q ≥αd+ temporal mixing of Glauber dynamics β spatial mixing of Gibbs measure ? α: 2 → 11/6 [Jerrum’95] [Salas-Sokal’97] [Bubley-Dyer’97] [Vigoda’99] conjecture: α=1

Spatial Mixing undirected G(V,E) 口 max-degree: q colors: d ▣ Gibbs measure:uniform random proper q-coloring of G c:V→[g region RCV △D∂R proper q-colorings,TA:△→[gl Pr[c(w)=x|o△]≈Pr[c(v)=x|T△] error exp (-t)

Spatial Mixing undirected G(V,E) q colors: Gibbs measure: uniform random proper q-coloring of G c : V ! [q] R G v t region R ⇢ V proper q-colorings error < exp (-t) max-degree: d ∆ ￾￾, ⌧￾ : ￾ ! [q] ￾ ◆ @R Pr[c(v) = x | ￾￾] ⇡ Pr[c(v) = x | ⌧￾]

Spatial Mixing weak spatial mixing (WSM): Pr[c(w)=x|o△]≈Pr[C(v)=x|TA] strong spatial mixing (SSM): Pr[c(v)=A,]Pr[c(v)=xTA,OA] error exp (-t) SSM:the value of critical to Pr[c(v)=O] counting and sampling is approximable by local information

Spatial Mixing R G v t ⇤ weak spatial mixing (WSM): strong spatial mixing (SSM): error < exp (-t) Pr[c(v) = x | ￾⇤] is approximable by local information SSM: the value of critical to counting and sampling Pr[c(v) = x | ￾￾] ⇡ Pr[c(v) = x | ⌧￾] Pr[c(v) = x | ￾￾, ￾⇤] ⇡ Pr[c(v) = x | ⌧￾, ￾⇤] ∆

Spatial Mixing of Coloring q-coloring of G q≥0d+O(1) max-degree:d SSM:>1.763.. (solution to x=e) average degree? [Goldberg,Martin,Paterson 05]triangle-free amenable graphs [Ge,Stefankovic 11]regular tree [Gamarnik,Katz,Misra 12]triangle-free graphs Spatial-mixing-based FPTAS: ● [Gamarnik,Katz 07]>2.8432...,triangle-free graphs [Lu,Y.14]0>2.58071.. SSM→algorithm [Goldberg,Martin,Paterson 05]amenable graph,SSM=FPRAS [Y.,Zhang 13]planar graph (apex-minor-free),SSM=FPTAS

Spatial Mixing of Coloring • [Goldberg, Martin, Paterson 05] triangle-free amenable graphs • [Ge, Stefankovic 11] regular tree • [Gamarnik, Katz, Misra 12] triangle-free graphs q-coloring of G q ≥αd+O(1) max-degree: d • [Goldberg, Martin, Paterson 05] amenable graph, SSM 㱺 FPRAS • [Y., Zhang 13] planar graph (apex-minor-free), SSM 㱺 FPTAS • [Gamarnik, Katz 07] α>2.8432..., triangle-free graphs • [Lu, Y. 14] α>2.58071... SSM: α>1.763... xx (solution to ) = e SSM 㱺 algorithm Spatial-mixing-based FPTAS: average degree?

Random Graph G(n,d/n) average degree:d max-degree:whp q-colorable whp for a g=O(d/In d) rapid mixing of(block)Glauber dynamics: [Dyer,Flaxman,Frieze,Vigoda 06]g=O(Inln n/Inlnln n) [Efthymiou,Spirakis 07][Mossel,Sly 08]g=poly(d) [Efthymiou 14]g >5.5d+1 spatial mixing?

Random Graph G(n,d/n) • [Dyer, Flaxman, Frieze, Vigoda 06] q=O(lnln n/lnlnln n) • [Efthymiou, Spirakis 07] [Mossel, Sly 08] q=poly(d) • [Efthymiou 14] q >5.5d+1 average degree: d max-degree: ⇥ ✓ ln n ln ln n ◆ whp rapid mixing of (block) Glauber dynamics: q-colorable whp for a q=O(d/ln d) spatial mixing?

Negative Result for SSM strong spatial mixing(SSM): for any vertex v Pr[c(v)=x|o△,oA]≈Pr[C(v)=x|T△,OA] in G(n,dln) for any g=O(1) q colors:▣▣▣▣☐ whp,3:(In n)long 个不个不 This counter-example only affect the strong spatial mixing

Negative Result for SSM R G v t ⇤ strong spatial mixing (SSM): for any q=O(1) q colors: whp, ∃: Ω(ln n) long v u o q-2 { } { } { } { } in G(n, d/n) for any vertex v ∆ Pr[c(v) = x | ￾￾, ￾⇤] ⇡ Pr[c(v) = x | ⌧￾, ￾⇤] This counter-example only affect the strong spatial mixing

Main Result g=ad+B for a>2 and some B=0(1)(23 is enough) fix any vE[n],and then sample G(n,d/n) whp:G(n,d/n)is g-colorable,and for any o,T Pr[c(v)=x o]-Pr[c(v)=xT=exp(-(t)) t=dist(v,△)=w(1) is the shortest distance from v to where o,t differ Strong Spatial Mixing w.r.t any fixed vertex!

Main Result R G v t ⇤ q ≥ αd + β for α>2 and some β=O(1) (23 is enough) fix any v∈[n], and then sample G(n,d/n) whp: G(n,d/n) is q-colorable, and for any ￾, ⌧ is the shortest distance from v to where σ,τ differ Strong Spatial Mixing w.r.t any fixed vertex! |Pr[c(v) = x | ￾] ￾ Pr[c(v) = x | ⌧ ]| = exp (￾⌦(t)) ∆ t = dist(v, ￾) = !(1)

Error Function error function [Gamarnik,Katz,Misra 12]: two distributions ul,u2 :>0,1 E(1,u2)=max -log 1(g) x,y∈2 2(y) marginal distributions u()=Pr[c(v)=xo]and E(u,u)≤exp(-2(t) Pr[c(v)=xo]-Pr[c(v)=x]=exp(-2(t))

Error Function error function [Gamarnik, Katz, Misra 12]: two distributions µ1, µ2 : ⌦ ! [0, 1] marginal distributions µ￾ v (x) = Pr[c(v) = x | ￾] and µ⌧ v |Pr[c(v) = x | ￾] ￾ Pr[c(v) = x | ⌧ ]| = exp (￾⌦(t)) E(µ￾ v , µ⌧ v )  exp(￾⌦(t)) E(µ1, µ2) = max x,y2⌦ ✓ log µ1(x) µ2(x) ￾ log µ1(y) µ2(y) ◆

Self-Avoiding Walk Tree G-V.E) T=TSAW(G,U)

Self-Avoiding Walk Tree G=(V,E) v T = T;)?(G, v)

共20页,试读已结束,阅读完整版请下载
刷新页面下载完整文档
VIP每日下载上限内不扣除下载券和下载次数;
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
相关文档