《计算机科学》相关教学资源(参考文献)Decay of Correlation in Spin Systems

(An algorithmic perspective to the) Decay of Correlation in Spin Systems Yitong Yin Nanjing University
(An algorithmic perspective to the) Decay of Correlation in Spin Systems Yitong Yin Nanjing University

Decay of Correlation hardcore model: Pr[v∈I|o] H(I)xIII a+I)-ur。o →∝ ○-○-○- o:fixing leaves to be occupied/unoccupied by I Decay of correlation:Pr[velI o]does not depend on o when d if入≤入。=(d-1)a+西 counting total weights n of all I.S.in graphs with max-degree λc→no FPRAS unless NP=RP [Sly10][Galanis Stefankovie Vigoda 12][Sly Sun 12]
regular tree ` ! 1 v σ: fixing leaves to be occupied/unoccupied by I Pr[v 2 I | ] Decay of Correlation hardcore model: • λ λc 㱺 no FPRAS unless NP=RP Decay of correlation: Pr[v∈I | σ] does not depend on σ when l→∞ random independent set I iff counting total weights λ|I| of all I.S. in graphs with max-degree ≤ d+1 [Sly10] [Galanis Štefankovič Vigoda 12] [Sly Sun 12] [Weitz 06] (d+1)-

Spin System undirected graph G=(V,E) fixed integer g≥2 configuration o∈[glY weight:w(o)=A(ou,)b(o) {u,w}∈E u∈V A:[ql×[q→R≥o symmetric gxy matrix (symmetric binary constraint) b:[q→R>0 g-vector (unary constraint) partition function: zc=∑w(o) o∈[glV Gibbs distribution: c(o)= w(o) ZG
Spin System undirected graph G = (V, E) fixed integer q ≥ 2 2 [q] V configuration w() = Y {u,v}2E A(u, v) Y v2V weight: b(v) A : [q] ⇥ [q] ! R0 b : [q] ! R0 symmetric q×q matrix q-vector (symmetric binary constraint) partition function: ZG = X 2[q]V w() Gibbs distribution: µG() = w() ZG (unary constraint)

undirected graph G=(V,E) fixed integer g≥2 configuration o∈[g]Y weight:w(o)=A(ou,)b() {u,v}∈E u∈V 2-spin model:q=2,o{0,1} 4- edge activities 6= -9 external field hardcore model:B=0,y=1 ZG= ∑ λ川 I:independent sets in G ·Ising model:B=y multi-spin model:general g=2 ·Potts model: A= 81 ·q-coloring: B=0 1 b= 1
• 2-spin model: q =2, • hardcore model: β=0, γ=1 • Ising model: β = γ • multi-spin model: general q ≥ 2 • Potts model: • q-coloring: β=0 undirected graph G = (V, E) fixed integer q ≥ 2 2 [q] V configuration w() = Y {u,v}2E A(u, v) Y v2V weight: b(v) 2 {0, 1}V A = A00 A01 A10 A11 = 1 1 b = b0 b1 = 1 edge activities external field 1 1 2 6 6 6 4 ... 3 7 7 7 A = 5 2 6 4 1 . . . 1 3 7 b = 5 ZG = X I: independent sets in G |I|

Models ●spin systems: Ising model,Potts model,g-coloring ●hardcore model generalization hypergraph matchings ● nonomer-dimer一 ZG= ∑ AIMI (NOT a spin system) M:matchings in G Holant problem defined by the (weighted-)EQ,the At-Most-One constraint,and any binary constraints The recursion of marginal probabilities is the same as a recursion on the tree of self-avoiding walks. (hopefully) correlation decay tractability of on trees approximate counting
Models • spin systems: • Ising model, Potts model, q-coloring • hardcore model • monomer-dimer • Holant problem defined by the (weighted-)EQ, the At-Most-One constraint, and any binary constraints • The recursion of marginal probabilities is the same as a recursion on the tree of self-avoiding walks. (NOT a spin system) hypergraph matchings generalization correlation decay on trees tractability of approximate counting (hopefully) ZG = X M: matchings in G |M|

Gibbs measure undirected graph G=(V,E) configuration o∈[g]V w(o) Gibbs distribution:)=HG()- by the chain rule:denoted V={v1,02,...,vn} w(o) w(o) u(σ)】 IIR=1PrX~uG[Xv:Ov:Vj<i:Xv3 =vj marginal probability:()=Pr[X=Xs=] X~HG where ve∈V,x∈[ql,boundary condition o∈[g]s on SCV approximately computing() FPTAS withinμg(c)±in time Poly(m for ZG
Gibbs Measure undirected graph G = (V, E) 2 [q] V configuration Gibbs distribution: by the chain rule: denoted V = {v1, v2,...,vn} where v∈V, x∈[q], boundary condition σ∈[q]S on S⊂V marginal probability: µ v (x) = Pr X⇠µG [Xv = x | XS = ] FPTAS for ZG µ v approximately computing (x) within µ v (x) ± 1 n in time Poly(n) µ() = µG() = w() ZG

Spatial Mixing (Decay of Correlation) marginal distribution at vertex v conditioning on weak spatial mixing(WSM)at rateδ(): o,T∈[g∂R:l呀-呀ITv≤δ(t) boundary conditions R 0 on infinite graphs: WSM uniqueness of infinite- volume Gibbs measure λ≤入c= dd a-a可> WSM of hardcore model on infinite(d+1)-regular tree
Spatial Mixing (Decay of Correlation) R G v t weak spatial mixing (WSM) at rate δ( ): kµ v µ⌧ 8, ⌧ 2 [q] v kT V (t) @R : µ v : marginal distribution at vertex v conditioning on σ boundary conditions on infinite graphs: WSM uniqueness of infinitevolume Gibbs measure µ v c = dd (d1)(d+1) WSM of hardcore model on infinite (d+1)-regular tree ∂R

Spatial Mixing (Decay of Correlation) marginal distribution at vertex v conditioning on weak spatial mixing(WSM))at rateδ(): o,T∈[goR: lg-Tv≤δ(t) strong spatial mixing(SSM))at rateδ(): o,T∈[gR,p∈[g]s:lgUp-PlTV≤6(t) SSM marginal prob.(x) is well approximated by the local information
G Spatial Mixing (Decay of Correlation) R v t strong spatial mixing (SSM) at rate δ( ): weak spatial mixing (WSM) at rate δ( ): S kµ v µ⌧ 8, ⌧ 2 [q] v kT V (t) @R : 8, ⌧ 2 [q] @R , 8⇢ 2 [q] S : µ v : marginal distribution at vertex v conditioning on σ SSM µ⇢ v marginal prob. (x) is well approximated by the local information kµ[⇢ v µ⌧[⇢ v kT V (t) ∂R

Tree Recursion hardcore model: pr Prlv is occupied independent set in T T 入Π1(1-p) u()alII 1+入Π1(1-p) (Vi pi=Prlv;is occupied in T RT= PT occupancy ratio: 1-PT d w=中限 i=1
Tree Recursion µ(I) / |I| hardcore model: independent set I in T = Qd i=1(1 pi) 1 + Qd i=1(1 pi) Ti pT = Pr[v is occupied ] v vi pi = Pr[vi is occupied ] in Ti T RT = pT 1 pT occupancy ratio: RT = Y d i=1 1 1 + Ri

Tree Recursion hardcore model: Prlv is occupied R=1-Prv is occupied independent set in G d (I)xλI 爬中 i三1 Prv is occupied] Pr[v2 is occupied o] Prvs is occupiedo] =1-Prvt is occupied R=1-Pri2 is occupied可 fs=1-Prv is occupied可 occupied ☑:unoccupied
R 3 = Pr[v3 is occupied | ] 1 Pr[v3 is occupied | ] R 2 = Pr[v2 is occupied | ] 1 Pr[v2 is occupied | ] R 1 = Pr[v1 is occupied | ] 1 Pr[v1 is occupied | ] R v = Pr[v is occupied | ] 1 Pr[v is occupied | ] R v = Y d i=1 1 1 + R i v v v Tree Recursion µ(I) / |I| hardcore model: independent set I in G v v1 v2 v3 : occupied : unoccupied
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 《计算机科学》相关教学资源(参考文献)Counting with Bounded Treewidth.pdf
- 《计算机科学》相关教学资源:The Magical Wild Animals(神奇的动物).pdf
- 《计算机科学》相关教学资源:Quest for Artificial Intelligence(人工智能探秘).pdf
- 《计算机科学》相关教学资源:Beautiful Journey of Theoretical Computer Science(理论计算机科学的美丽旅程).pdf
- 《计算机科学》相关教学资源(参考文献)Phase transition of hypergraph matchings.pdf
- 《计算机科学》相关教学资源(参考文献)Correlation Decay up to Uniqueness in Spin Systems.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling up to the Uniqueness Threshold.pdf
- 《计算机科学》相关教学资源(参考文献)Rectangle Inequalities for Data Structure Lower Bounds.pdf
- 《计算机科学》相关教学资源(参考文献)Local Distributed Sampling from Locally-Defined Distribution.pdf
- 《计算机科学》相关教学资源(参考文献)Introduction to the Correlation Decay Method.pdf
- 《计算机科学》相关教学资源(参考文献)Sampling & Counting for Big Data.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)Distributed Algorithms for MCMC Sampling.pdf
- 《计算机科学》相关教学资源(参考文献)Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic and Distributed Algorithms for Sampling from Gibbs Distributions.pdf
- 《计算机科学》相关教学资源(参考文献)Ranged hash functions and the price of churn.pdf
- 《计算机科学》相关教学资源(参考文献)Fast construction of overlay networks.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-Probe Proofs.pdf
- 《计算机科学》相关教学资源(参考文献)Cell-probe proofs and nondeterministic cell-probe complexity.pdf
- 《计算机科学》相关教学资源(参考文献)POMP:Protocol Oblivious SDN Programming with Automatic Multi-Table Pipelining.pdf
- 《计算机科学》相关教学资源(参考文献)Progress of Concurrent Objects with Partial Methods.pdf
- 《计算机科学》相关教学资源(参考文献)A Practical Verification Framework for Preemptive OS Kernels.pdf
- 《计算机科学》相关教学资源(参考文献)A Program Logic for Concurrent Objects under Fair Scheduling.pdf
- 《计算机科学》相关教学资源(参考文献)Compositional Verification of Termination-Preserving Refinement of Concurrent Programs.pdf
- 《计算机科学》相关教学资源(参考文献)Rely-Guarantee-Based Simulation for Compositional Verification of Concurrent Program Transformations.pdf
- 《计算机科学》相关教学资源(参考文献)Characterizing Progress Properties of Concurrent Objects via Contextual Refinements.pdf
- 《计算机科学》相关教学资源(参考文献)Modular Verification of Linearizability with Non-Fixed Linearization Points.pdf
- 《计算机科学》相关教学资源(参考文献)A Rely-Guarantee-Based Simulation for Verifying Concurrent Program Transformations.pdf
- 《计算机科学》相关教学资源(参考文献)Deny-Guarantee Reasoning.pdf
- 《计算机科学》相关教学资源(参考文献)Technical Report TTIC-TR-2008-1(Local Rely-Guarantee Reasoning).pdf
- 《计算机科学》相关教学资源(PPT课件讲稿)On the Relationship between Concurrent Separation Logic and Assume-Guarantee Reasoning.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)Certifying Low-Level Programs with Hardware Interrupts and Preemptive Threads.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)An Open Framework for Foundational Proof-Carrying Code.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)Modular Verification of Assembly Code with Stack-Based Control Abstractions.ppt
- 《计算机科学》相关教学资源(PPT课件讲稿)Modular Verification of Concurrent Assembly Code with Dynamic Thread Creation and Termination.ppt
- 南京大学:《计算机程序的构造和解释 Structure and Interpretation of Computer Programs》课程教学资源(PPT课件讲稿)01-Introduction(主讲:冯新宇).pptx
- 南京大学:《计算机程序的构造和解释 Structure and Interpretation of Computer Programs》课程教学资源(PPT课件讲稿)02-Names & Functions.pptx
- 南京大学:《计算机程序的构造和解释 Structure and Interpretation of Computer Programs》课程教学资源(PPT课件讲稿)03-Control.pptx
- 南京大学:《计算机程序的构造和解释 Structure and Interpretation of Computer Programs》课程教学资源(PPT课件讲稿)04-Environment Diagrams.pptx