南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Cayley

Counting (labeled)trees "How many different trees 8838 can be formed from n distinct vertices?" 9 9 及。人
Counting (labeled) trees “How many different trees can be formed from n distinct vertices?

Cayley's formula: There are n-2 trees on n distinct vertices. 00 八入.八 38g9 3 63635363 人又 Arthur Cayley
Cayley’s formula for the number of trees Chapter 30 Arthur Cayley One of the most beautiful formulas in enumerative combinatorics concerns the number of labeled trees. Consider the set N = {1, 2,...,n}. How many different trees can we form on this vertex set? Let us denote this number by Tn. Enumeration “by hand” yields T1 = 1, T2 = 1, T3 = 3, T4 = 16, with the trees shown in the following table: 434 34 34 343434 3 4 3434 34 34 343434 3 4 1 1 12 12 2 1 2 1212 12 1 1 2 3 2 21212 1212 12 12 121212 1 2 1 3 3 3 Note that we consider labeled trees, that is, although there is only one tree of order 3 in the sense of graph isomorphism, there are 3 different labeled trees obtained by marking the inner vertex 1, 2 or 3. For n = 5 there are three non-isomorphic trees: 5 60 60 For the first tree there are clearly 5 different labelings, and for the second and third there are 5! 2 = 60 labelings, so we obtain T5 = 125. This should be enough to conjecture Tn = nn−2, and that is precisely Cayley’s result. Theorem. There are nn−2 different labeled trees on n vertices. This beautiful formula yields to equally beautiful proofs, drawing on a variety of combinatorial and algebraic techniques. We will outline three of them before presenting the proof which is to date the most beautiful of them all. Arthur Cayley There are nn2 trees on n distinct vertices. Cayley’s formula:

Prufer Code leaf vertex of degree 1 removing a leaf from T,still a tree Ts: T1=T; for i=1 to n-1 ui:smallest leaf in Ti; (ui,vi):edge in Ti; Ti+1=delete ui fromTi; u:2,4,5,6,3,1 Prufer code: V:4,3,1,3,1,7 (V1,V2,.,Vn-2)
Prüfer Code 4 3 6 2 5 1 7 T1 = T ; ui : smallest leaf in Ti ; (ui,vi) : edge in Ti ; Ti+1 = delete ui fromTi ; for i = 1 to n-1 Prüfer code: (v1, v2, ... , vn-2) T : ui : vi : T12345 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 T6 leaf : vertex of degree 1 removing a leaf from T, still a tree

edges of T:(ui,vi),1sisn-1 ui:smallest leaf in T n is never deleted Vn-1=n a tree has≥2 leaves }> lli≠n T: Only need to recover every ui from (v1,v1,...,vn-2). ui is the smallest number not in {u1,,u-1}U{v,.,vn-1} u:2,4,5,6,3,1 :4,3,1,3,1,7 (V1,V2,.,Vn-2)
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) edges of T : (ui,vi), 1≤i≤n-1 vn-1 = n a tree has ≥2 leaves ui : smallest leaf in Ti } ui ≠ n n is never deleted Only need to recover every ui from (v1, v1, ... , vn-2). {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in

ui is the smallest number not in {u1,,u-1}U{v2,,vn-1} V vertex v in T, occurrences of v in ul,u2,...un-1,Vn-1:1 #occurrences of v in edges(ui,vi),l≤i≤n-l:( egr(v) T: 2 occurrences of v in Prufer code:(v1,v2,...Vn-2) degn(v)-1 ui:2,4,5,6,3,1 :4,3,1,3,1,7 (V1,V2,.,Vn-2)
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in ∀ vertex v in T, # occurrences of v in u1, u2, ... , un-1, vn-1 : 1 # occurrences of v in edges (ui,vi), 1≤i≤n-1: degT(v) # occurrences of v in Prüfer code: (v1, v2, ... , vn-2) degT(v)-1

ui is the smallest number not in {u1,,u-1}U{v,,vn-1} V vertex v in Ti, #occurrences of v in ui,ui+1,...un-1,Vn-1:1 occurrences of v in edges (ui,v),isjsn-1:degT,(v) T3: occurrences of v in (vi,...Vn-2) degr,(v)-1 leaf v of Ti: ui:2,45,6,3,1 in {ui,Uitl,...un-1,Vn-1 :4,3,1,3,1,7 not in {vi,vi+1,...Vn-2} (V1,V2,.,Vn-2) ui:smallest leaf in T
4 3 6 2 5 1 7 T3 : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in ∀ vertex v in Ti, # occurrences of v in ui, ui+1, ... , un-1, vn-1 : 1 # occurrences of v in edges (uj,vj), i≤j≤n-1: # occurrences of v in (vi, ... , vn-2) LMOTi (v) LMOTi (v) 1 leaf v of Ti : in {ui, ui+1, ... , un-1, vn-1} not in {vi, vi+1, ... , vn-2} ui : smallest leaf in Ti

ui is the smallest number not in {u1,,u-1}U{v,,vn-1} T 2) 5 T=empty graph; Vn-1=n; for i=1 to n-1 ui:smallest number not in ul,...ui-1)Ufvis....Vn-1) u:2,4,5,6,3,1 add edge (ui,vi)to T; :4,3,1,3,1,7 (V1,V2,…,Vn-2)
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) {u1,...,ui1} {vi,...,vn1} ui is the smallest number not in T = empty graph; ui : smallest number not in add edge (ui,vi) to T ; for i = 1 to n-1 {u1,...,ui-1}∪{vi,...,vn-1} vn-1 = n ;

Prufer code is reversible 1-1 every(1,v2,,m-2)∈{1,2,,n}n-2 is decodable to a tree > onto T 2 T=empty graph; Vn-1 =n; for i=1 to n-1 ui:smallest number not in ul,...ui-1Uvis...vn-1 u:2,4,5,6,3,1 add edge (ui,vi)to T; :4,3,1,3,1,7 (V1,V2,.,Vn-2)
4 3 6 2 5 1 7 T : ui : vi : 4, 3, 1, 3, 1, 7 2, 4, 5, 6, 3, 1 (v1, v2, ... , vn-2) T = empty graph; ui : smallest number not in add edge (ui,vi) to T ; for i = 1 to n-1 {u1,...,ui-1}∪{vi,...,vn-1} vn-1 = n ; Prüfer code is reversible 1-1 every (v1, v2,...,vn2) {1, 2,...,n}n2 is decodable to a tree onto

Prufer code is reversible 1-1 every(1,v2,,m-2)∈{1,2,.,n}n-2 is decodable to a tree > onto Cayley's formula: There are n"-2 trees on n distinct vertices
Prüfer code is reversible 1-1 every (v1, v2,...,vn2) {1, 2,...,n}n2 is decodable to a tree onto There are nn2 trees on n distinct vertices. Cayley’s formula:

Double Counting of sequences of adding directed edges to an empty graph to form a rooted tree
# of sequences of adding directed edges to an empty graph to form a rooted tree Double Counting
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Exercise Lecture For Advanced Algorithms(2022 Fall).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)SDP-Based Algorithms.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Linear Program.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)LP Duality.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Dimension Reduction.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Data.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Hashing and Sketching.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Introduction(Min-Cut and Max-Cut,尹⼀通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Concentration of Measure.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Balls into Bins.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Fingerprinting.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十八章 边界条件的建立 Creation of Boundary Condition.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十七章 模型检查与处理 Model Checking and Processing.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十六章 网格划分方法.pdf
- 电子科技大学:《有限元理论与建模方法 Finite Element Analysis and Modeling》研究生课程教学资源(课件讲稿)第二篇 有限元建模方法 第十五章 单元类型及特性定义.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Sets.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Function.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Polya.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Principle of Inclusion-Exclusion(PIE).pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Balls and Bins.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Chernoff.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Concentration.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Coupling.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Finger printing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Identity Testing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Markov Chain.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Min-Cut.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Mixing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Moments.pdf