南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Identity Testing

Course Info 。尹一通 yitong.yin@gmail.com yinyt@nju.edu.cn 。office hour: 804,Thursday 2-4pm course homepage:http://tcs.nju.edu.cn/wiki
Course Info • 尹一通 yitong.yin@gmail.com yinyt@nju.edu.cn • office hour: 804, Thursday 2-4pm • course homepage: http://tcs.nju.edu.cn/wiki

Textbooks ITHMS Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,1995. Probability and Computing tandomized Algorithms and Probabilistic Analysis Michael Mitzenmacher EhUp国 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press,2005
Textbooks Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005

References 有件海世A3转:C时N CHAILE1年.BB6n k0NA10。v4n7 CLIFFOND STEIN CLRS Feller INTRODUCTION TO ALGORITHMS An Introduction to Probability Theory and Its Applications 生WLE到 Aldous and Fill Reversible Markov Chains and THE PROBABILISTIC Random Walks on Graphs HETHOD Third Editiee Alon and Spencer The Probabilistic Method
References CLRS Feller An Introduction to Probability Theory and Its Applications Aldous and Fill Reversible Markov Chains and Random Walks on Graphs Alon and Spencer The Probabilistic Method

Randomized Algorithms 'algorithms which use randomness in computation 44 Turing Machine random coin Why? Simpler. ● Faster. ● Can do impossibles. ● Can give us clever deterministic algorithms. ● Random input. ● Deterministic problem with random nature
“algorithms which use randomness in computation” Randomized Algorithms Why? • Simpler. • Faster. • Can do impossibles. • Can give us clever deterministic algorithms. • Random input. • Deterministic problem with random nature. • ... ... Turing Machine random coin

Checking Matrix Multiplication three nxn matrices A,B,C: A X B 是 C best matrix multiplication algorithm:O(n2.373)
Checking Matrix Multiplication A × B = C ? three n×n matrices A, B, C: best matrix multiplication algorithm: O(n2.373)

Checking Matrix Multiplication three nxn matrices A,B,C: 3.0 na ve 兰 C 2.9 人 O(n) Strassen 2.8 PaⅫ Bini et al. 2.7 gorithm:O(n2.373) 2.6 Schonhage Romani 2.5 Coppersmith,Winograd Strassen 2.4 Coppersmith,Winograd Stothers Williams Year 1950 1960 1970 1980 1990 2000 2010
Checking Matrix Multiplication A × B = C ? three n×n matrices A, B, C: best matrix multiplication algorithm: O(n) O(n2.373)

Checking Matrix Multiplication three nxn matrices A,B,C: A X B 是 C best matrix multiplication algorithm:O(n2.373) Freivald's Algorithm pick a uniform random r E0,1)"; check whether A(Br)=Cr; time:O(n2) if AB =C,always correct
best matrix multiplication algorithm: Checking Matrix Multiplication A × B = C ? three n×n matrices A, B, C: Freivald’s Algorithm pick a uniform random r ∈{0,1}n; check whether A(Br) = Cr ; time: O(n2) if AB = C, always correct O(n2.373)

Freivald's Algorithm pick a uniform random r∈{0,l"; check whether A(Br)=Cr; if AB =C,always correct ifAB≠C, letD=AB-C≠0n×n sayD,卡0 2n1 1 PABr-C1-PD.s 2 二 -2 m (Dr)i=>Dikrk =0 D r k=1 i ∑D >=D k≠j
Freivald’s Algorithm pick a uniform random r ∈{0,1}n; check whether A(Br) = Cr ; if AB = C, always correct if AB ≠ C, Pr[ABr = Cr] = Pr[Dr = 0] let D = AB C = 0nn D r i (Dr)i = n k=1 Dikrk =0 rj = 1 Dij n k=j Dikrk 2n 2n1 = 1 2 say Dij = 0

Freivald's Algorithm pick a uniform random r∈{0,l"; check whether A(Br)=Cr; if AB =C,always correct Theorem(Freivald,1979) IfAB≠C,for a uniformly random r∈{0,1n, 1 Pr[ABr=Cr]≤ repeat independently for 100 times time:O(n2) ifAB≠C,error probability≤2-1oo
Freivald’s Algorithm pick a uniform random r ∈{0,1}n; check whether A(Br) = Cr ; if AB = C, always correct If AB ⇥= C, for a uniformly random r {0, 1}n , Pr[ABr = Cr] 1 2 . Theorem (Freivald, 1979) repeat independently for 100 times time: O(n2) if AB ≠ C, error probability ≤ 2100

Monte Carlo ys Las Vegas Two types of randomized algorithms: Monte Carlo Las Vegas LAS VEGAS N E VA DA running time is fixed always correct correctness is random running time is random
Monte Carlo vs Las Vegas Monte Carlo Las Vegas running time is fixed correctness is random always correct running time is random Two types of randomized algorithms:
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Finger printing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Coupling.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Concentration.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Chernoff.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Balls and Bins.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Principle of Inclusion-Exclusion(PIE).pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Polya.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Function.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Sets.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Cayley.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Exercise Lecture For Advanced Algorithms(2022 Fall).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)SDP-Based Algorithms.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Linear Program.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)LP Duality.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Markov Chain.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Min-Cut.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Mixing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Moments.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Random Rounding.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 4 Task Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 5 ask Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case Analysis - Use DARTS to Design a S/W System of Robot Controller.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case 4.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Hot topics in ES.pdf
- 中国计算机学会学术著作丛书:《对等网络——结构、应用与设计 Peer-to-Peer Network Structure, Application and Design》PDF电子书(正文,共九章).pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic inference in probabilistic graphical models.pdf
- 《计算机科学》相关教学资源(参考文献)Dynamic Sampling from Graphical Models.pdf
- 《计算机科学》相关教学资源(参考文献)On Local Distributed Sampling and Counting.pdf
- 《计算机科学》相关教学资源(参考文献)What can be sampled locally?.pdf