南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory

Matching Theory
Matching Theory

System of Distinct Representatives (Transversal) system of distinct representatives(SDR) for sets S1,S2,...,Sm distinct1,c2,.·,m 99 8 xi∈Sa for i=1,2,...m
System of Distinct Representatives system of distinct representatives (SDR) for sets S1, S2,...,Sm distinct x1, x2,...,xm xi Si for i =1, 2, ..., m (Transversal)

Marriage Problem Does there exist an SDR for S1,S2,.,Sm? m girls Si:boys that girl i likes "Is there a way of marrying these m girls?
Marriage Problem Does there exist an SDR for S1, S2,...,Sm ? m girls Si : boys that girl i likes “Is there a way of marrying these m girls?

S1,S2,...,Sm have a SDR > dinstinct x1∈S1,c2∈S2,..,cm∈Sm I{1,2,.,m}, lUeS≥l{x|i∈II≥lI. distinct
S1, S2,...,Sm have a SDR ⇥ dinstinct x1 S1, x2 S2,...,xm Sm ⇥I {1, 2,...,m}, ⇥ iI Si |{x |I|. i | i ⇥ I}| distinct

S1,S2,...,Sm have a SDR → IC{1,2,.,m},UeS≥lI
S1, S2,...,Sm have a SDR ⇥I {1, 2,...,m}, ⇥ iI Si |I|

Hall's Theorem (marriage theorem) S1,S2,,S,n have a SDR→ VI C {1,2,...,m),Uier S
S1, S2,...,Sm have a SDR Hall’s Theorem (marriage theorem) ⇥I {1, 2,...,m}, ⇥ iI Si |I|

Hall's Theorem(graph theory form) A bipartite graph G(U,V,E)has a matching of U → lW(S)l≥ISl for all SCU matching:edge independent set MCE with no e1,e2CM share a vertex W(S)={vI3u∈S,uv∈E} V
Hall’s Theorem (graph theory form) A bipartite graph G(U,V,E) has a matching of U |N(S)| ≥ |S| for all S⊆U U V matching: edge independent set M⊆E with no e1,e2∈M share a vertex N(S) = {v | ∃u∈S, uv∈E}

Hall's Theorem(marriage theorem) I{1,2,,m,U∈rS≥|I S1,S2,...,Sm have a SDR critical family:S1,S2,...,S k<m k Us: =k i= Induction on m: m =1,trivial case.I:there is no critical family in S1,S2,...,S case.2:there is a critical family in S1,S2,...,Sm
S1, S2,...,Sm have a SDR Hall’s Theorem (marriage theorem) ⇥I {1, 2,...,m}, ⇥ iI Si |I|. Induction on m : m =1, trivial case.1: there is no critical family in S1, S2, ..., Sm case.2: there is a critical family in S1, S2, ..., Sm critical family: S1, S2,...,Sk ⇥ k i=1 Si = k k < m

Hall's Theorem(marriage theorem) VI C{1,2,...,m),Uier Si >S1,S2,...,Sm have a SDR case.I:there is no critical family in S1,S2,...,Sm I∈{1,2,,m}that|lIl take an arbitrary xESm as representative of S remove Sm and x Si'=Slx}i=1,2,.,m-1 I≤{1,2,,m-1},UerS≥I due to I.H.S1,....Sm-1 have a SDR 1,...,m-1} 1,....m-1 and form a SDR for S1,S2,...,Sm
case.1: there is no critical family in S1, S2, ..., Sm take an arbitrary x∈Sm as representative of Sm remove Sm and x Si ’ = Si\{x} i = 1, 2, ..., m-1 ⌅I ⇥ {1, 2,...,m 1}, ⇥ i⇥I S i ⇤ |I| ⇥I {1, 2,...,m} that |I| |I| due to I.H. S1, S2,...,Sm have a SDR Hall’s Theorem (marriage theorem) ⇥I {1, 2,...,m}, ⇥ iI Si |I|. S⇥ 1,...,S⇥ m1 have a SDR {x1,...,xm1} x1,...,xm1 and x form a SDR for S1, S2, ..., Sm

Hall's Theorem(marriage theorem) VI C{1,2,...,m),Uier Si. S1:S2,...,Sm have a SDR case.2: there is a critical family in S1,S2,...,S say|Sm-k+1U·USml=k k<m due to I.H.Sm-k+1,..,Sm have a SDR X=x1,..xx Si'-SX i=1,2,.,m-k I≤{1,2,..,m-k}, Um-k+1S:UUieI Sik+ Uier S≥II|
S1, S2,...,Sm have a SDR Hall’s Theorem (marriage theorem) ⇥I {1, 2,...,m}, ⇥ iI Si |I|. case.2: there is a critical family in S1, S2, ..., Sm say k < m due to I.H. Sm-k+1,..., Sm have a SDR X={x1, ..., xk} |Smk+1 ⇥ ··· ⇥ Sm| = k ⇤I ⇥ {1, 2,...,m k}, ⇥m i=mk+1 Si ⇥ i⇥I Si k + |I| |I| ⇥ i⇥I S i Si ’ = Si\X i = 1, 2, ..., m-k
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Function.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Sets.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Cayley.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Exercise Lecture For Advanced Algorithms(2022 Fall).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)SDP-Based Algorithms.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Linear Program.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)LP Duality.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Dimension Reduction.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Data.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Hashing and Sketching.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Introduction(Min-Cut and Max-Cut,尹⼀通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Concentration of Measure.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Balls into Bins.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Polya.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Principle of Inclusion-Exclusion(PIE).pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Balls and Bins.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Chernoff.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Concentration.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Coupling.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Finger printing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Identity Testing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Markov Chain.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Min-Cut.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Mixing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Moments.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Random Rounding.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf