南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method

的 以d The probabilistic Method Paul Erdos
The Probabilistic Method Paul Erdős

Ramsey Number "In any party of six people,either at least three of them are mutual strangers or at least three of them are mutual acquaintances" For any two coloring of K6, there is a monocbromatic K3. Ramsey's Theorem If n=R(k,k),for any two coloring of Kn,there is a monochromatic Kk. Ramsey number:R(k,k)
Ramsey Number • For any two coloring of , there is a monochromatic . “In any party of six people, either at least three of them are mutual strangers or at least three of them are mutual acquaintances” K6 K3 Ramsey’s Theorem If n R(k,k), for any two coloring of Kn, there is a monochromatic Kk . Ramsey number: R(k,k)

Theorem (Erdos 1947) If(份·2l-囱<1 then it is possible to color the edges of Kn with two colors so that there is no monochromatic Kk subgraph. For each edge ee Kn, e is colored 8 with prob 1/2 with prob 1/2 For a particular Kk,()edges Pr[KorK]=2l-匀
If n k ⇥ · 21 k 2 ⇥ < 1 then it is possible to color the edges of Kn with two colors so that there is no monochromatic Kk subgraph. Theorem (Erdős 1947) e is colored with prob 1/2 with prob 1/2 For a particular Kk , k 2 ⇥ edges Pr[ or ] = 21 k 2 ⇥ Kk Kk For each edge e Kn

Theorem (Erdos 1947) If(份·2l-囱<1 then it is possible to color the edges of Kn with two colors so that there is no monochromatic Kk subgraph. For a particular Kk, Pr[the Kk is monochromatic]=21-() number of Kk in Kn: () Pr[3 a monochromatic Kk] ≤(附·21- 0<1
If n k ⇥ · 21 k 2 ⇥ < 1 then it is possible to color the edges of Kn with two colors so that there is no monochromatic Kk subgraph. Theorem (Erdős 1947) For a particular Kk , Pr[the Kk is monochromatic] = 21 k 2 ⇥ number of Kk in Kn: n k ⇥ Pr[ a monochromatic Kk ] ⇤ n k ⇥ · 21 k 2 ⇥ < 1

Theorem (Erdos 1947) If(份-21-均0 There exists a two-coloring without monochromatic Kk
If n k ⇥ · 21 k 2 ⇥ 0 There exists a two-coloring without monochromatic . Kk

Tournament T(V,E) n players,each pair has a match. u points to v iff u beats v. k-paradoxical: For every k-subset S of V, there is a player in DS who beats all players in S. "Does there exist a k-paradoxical tournament for every finite k?
Tournament n players, each pair has a match. u points to v iff u beats v. k-paradoxical: For every k-subset S of V, there is a player in V \ S who beats all players in S. T(V, E) “Does there exist a k-paradoxical tournament for every finite k?

Theorem (Erd6s 1963) If ((1-2-)"<1 then there is a k-paradoxical tournament of n players. Pick a random tournament T on n players [n]. Event As:no player in \S beat all players in S. PrAs=(1-2k)”-k
If n k ⇥ 1 2k⇥nk < 1 then there is a k-paradoxical tournament of n players. Theorem (Erdős 1963) Pick a random tournament T on n players [n]. Fixed any S [n] k ⇥ Event AS : no player in V \S beat all players in S. Pr[AS] = 1 2k⇥nk

Theorem(Erd6s 1963) If()(1-2-k)”-k、 1 then there is a k-paradoxical tournament of n players. Pick a random tournament T on n players [n]. Event As no player in \S beat all players in S. PrAs=((1-2n- Pr As ≤∑(1-2k)n-k <1 s∈() S∈(R)
If n k ⇥ 1 2k⇥nk < 1 then there is a k-paradoxical tournament of n players. Theorem (Erdős 1963) Pick a random tournament T on n players [n]. Event AS : no player in V \S beat all players in S. Pr[AS] = 1 2k⇥nk Pr < 1 ⇧ ⇤ ⌥ S( [n] k ) AS ⇥ ⌃ ⌅ ⇥ S⇥( [n] k ) (1 2k) nk

Theorem (Erdos 1963) If (R)(1-2-k)"<1 then there is a k-paradoxical tournament of n players. Pick a random tournament T on n players [n]. Event As no player in \S beat all players in S. se(l) 0 se()
If n k ⇥ 1 2k⇥nk 0

Theorem (Erd6s 1963) If (R)(1-2-k)"0 There is a k-paradoxical tournament on n players
If n k ⇥ 1 2k⇥nk 0 There is a k-paradoxical tournament on n players
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Principle of Inclusion-Exclusion(PIE).pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Polya.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Function.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Sets.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Cayley.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Exercise Lecture For Advanced Algorithms(2022 Fall).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)SDP-Based Algorithms.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Linear Program.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)LP Duality.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Dimension Reduction.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Data.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Hashing and Sketching.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Introduction(Min-Cut and Max-Cut,尹⼀通).pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Balls and Bins.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Chernoff.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Concentration.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Coupling.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Finger printing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Identity Testing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Markov Chain.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Min-Cut.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Mixing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Moments.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Random Rounding.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 3 Software System.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 4 Task Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 5 ask Management.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Case Analysis - Use DARTS to Design a S/W System of Robot Controller.pdf