南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Generating Function

Compositions by 1 and 2 of compositions of n #of(x1,x2,.,xk) with summands from for some k≤m {1,2} C1十··+Ck= xi∈{1,2} an an-1 +an-2 a0=1a1=1 Case.I Ck=1 x1+···+ck-1=m-1 Case.2 xk=2 x1+···+xk-1=m-2
# of compositions of n with summands from {1,2} xi {1, 2} Case.1 Case.2 xk = 1 xk = 2 x1 + ··· + xk1 = n 1 x1 + ··· + xk1 = n 2 Compositions by 1 and 2 for some k n # of (x1, x2,...,xk) x1 + ··· + xk = n an = an1 + an2 a0 = 1 a1 = 1

Dominos 2 domino:1 #of tilings 2 …□ n an an-1+an-2 a0=1a1=1 Case.I 2×(n-1) Case.2 ☐…2x(n-2)
Dominos domino: 1 2 2 n # of tilings Case.1 Case.2 2×(n-1) 2×(n-2) an = an1 + an2 a0 = 1 a1 = 1

Fibonacci number Fn-1+Fn-2ifn≥2, if n =1 fm=0
Fibonacci number Fn = ⌅⇤ ⌅⇥ Fn1 + Fn2 if n 2, 1 if n = 1 0 if n = 0

full parenthesization of n+1 factors ((ab)c)d (a(bc))d (ab)(cd)a((bc)d)a(b(cd)) full binary trees with n+1 leaves 心公人公
full binary trees with n+1 leaves ((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd)) full parenthesization of n+1 factors

Catalan number On:of full binary trees with n+1 leaves 公a公 Recursion: Ck Cn-1-k Co=1forn≥1, m-1 Cn =>Ck.Cn-1-k k=0
Cn = n 1 k=0 CkCn1k C0 = 1 for n 1, Ck Cn1k Cn : # of full binary trees with n+1 leaves Catalan Number Recursion:

Generating Functions
Generating Functions

Generating Functions: Cartbndge Sdis n Advanced Mathelatcs 49 Enumerative Combinatorics Volume I "the most useful but most RICHARD P.STANLEY difficult to understand method (for counting) CONCRETE MATHEMATICS A FOUNDATION FOR COMPUTER SCIENCE GRAHAM KNUTH PATASHNIK "the most powerful way to deal with sequences of numbers,as far as anybody knows
“the most useful but most difficult to understand method (for counting)” Generating Functions: “the most powerful way to deal with sequences of numbers, as far as anybody knows

generate enumerate all subsets of O,O,O} (x0+x2)(x0+x2)(x0+x2) zOxOz0 +x0z0z1+x0z1z0+x0x1z1 +x1x0x0+x1a0x1+x1x1x0+x1x1x1 (1+x)3=1+3x+3x2+x3 coefficient ofx:of k-subsets
{ , , } enumerate all subsets of generate (x0 + x1)(x0 + x1)(x0 + x1) = + + + + + + + x1 x0x0x0 x0x0x1 x0 x0 x1 x0 x1 x1 x0 x0 x1 x0 x1 x1 x0 x1 x1 x1 x1 (1 + x) 3 =1+3x + 3x2 + x3 coefficient of xk : # of k-subsets

{○,○,○, ●,●,●,●, ○,○,○,○,○} (1+x+x2+x3) (1+x+x2+x3+x4) (1+x+x2+x3+x4+x5) 三 1+3+6x2+10x3+14x4+17x5+18x6 +17x7+14x8+10x9+6x10+3x11+x12
(1 + x + x2 + x3) (1 + x + x2 + x3 + x4) (1 + x + x2 + x3 + x4 + x5) { } , , , , , , , , , , , = 1+3x + 6x2 + 10x3 + 14x4 + 17x5 + 18x6 +17x7 + 14x8 + 10x9 + 6x10 + 3x11 + x12

Double Decks choose m cards from 2 decks of n cards (+1+x)(唱+2+x)…(a%+x%+x品) of m-order terms coefficient of xm in (1+x+x2)
Double Decks (x0 1 + x1 1 + x2 1) (x0 2 + x1 2 + x2 2) ···(x0 n + x1 n + x2 n) # of m-order terms (1 + x + x2) n coefficient of xm in 2 deck of s n cards choose m cards from
按次数下载不扣除下载券;
注册用户24小时内重复下载只扣除一次;
顺序:VIP每日次数-->可用次数-->下载券;
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Sets.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Extremal Combinatorics.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Existence.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Cayley.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Basic Enumeration(主讲:尹一通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Exercise Lecture For Advanced Algorithms(2022 Fall).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)SDP-Based Algorithms.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Linear Program.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)LP Duality.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Dimension Reduction.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Rounding Data.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Hashing and Sketching.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Fingerprinting.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Introduction(Min-Cut and Max-Cut,尹⼀通).pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Concentration of Measure.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Balls into Bins.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Greedy and Local Search.pdf
- 南京大学:《高级算法 Advanced Algorithms》课程教学资源(课件讲稿)Fingerprinting.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Matching Theory.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Polya.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Principle of Inclusion-Exclusion(PIE).pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)The Probabilistic Method.pdf
- 南京大学:《组合数学 Combinatorics》课程教学资源(课件讲稿)Ramsey Theory.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Balls and Bins.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Chernoff.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Concentration.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Coupling.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Finger printing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Identity Testing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Lovász Local Lemma.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Markov Chain.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Min-Cut.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Mixing.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Moments.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Random Rounding.pdf
- 南京大学:《随机算法 Randomized Algorithms》课程教学资源(课件讲稿)Universal Hashing.pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 1 Overview(廖勇).pdf
- 电子科技大学:《嵌入式系统设计 Embedded Systems Design》课程教学资源(课件讲稿)Chapter 2 Hardware System.pdf